数学分析论文范文10篇

时间:2024-04-25 13:32:15

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇数学分析论文范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

数学分析论文

数学思想数学分析论文

以素质教育为导向的初中数学教学大纲明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理及其内容所反映出来的数学思想和方法。”可见数学思想和方法已提高到不容忽视的重要地位。素质教育下的数学教学更注重数学品质的培养和数学能力的提高,这较以题海战为主、靠成绩说话的应试教育上升了一个新的台阶。在这新的台阶上,数学教师面临着一个新的课题——如何“渗透数学思想,掌握数学方法,走出题海误区。”我们的做法是:端正渗透思想,更新教育观念,明确思想方法的内涵,强化渗透意识,制定渗透目标;在数学思想上重渗透,数学方法上重掌握,渗透途径上重探索,数学训练上重效果。

一、端正渗透思想更新教育观念

纵观数学教学的现状,应该看到,应试教育向素质教育转轨的过程中,确实有很多弄潮儿站到了波峰浪尖,但也仍有一些数学课基本上还是在应试教育的惯性下运行,对素质教育只是形式上的“摇旗呐喊”,而行动上却留恋应试教育“按兵不动”,缺乏战略眼光,因而至今仍被困惑在无边的题海之中。

究竟如何走出题海,摆脱那种劳民伤财的大运动量的机械训练呢?我们认为:坚持渗透数学思想和方法,更新教育观念是根本。要充分发掘教材中的知识点和典型例题中所蕴含的数学思想和方法,依靠数学思想指导数学思维,尽量暴露思维的全过程,展示数学方法的运用,大胆探索,会一题明一路,以少胜多,这才是走出题海误区,真正实现教育转轨的新途径。

二、明确数学思想和方法的丰富内涵

所谓数学思想就是对数学知识和方法的本质及规律的理性认识,它是数学思维的结晶和概括,是解决数学问题的灵魂和根本策略。而数学方法则是数学思想的具体表现形式,是实现数学思想的手段和重要工具。数学思想和数学方法之间历来就没有严格的界限,只是在操作和运用过程中根据其特征和倾向性,分为数学思想和数学方法。一般说来,数学思想带有理论特征,如符号化思想,集合对应思想,转化思想等。而数学方法则具有实践倾向,如消元法、换元法、配方法、待定系数法等。因此数学思想具有抽象性,数学方法具有操作性。数学思想和数学方法合在一起,称为数学思想方法。

查看全文

幼儿学习数学分析论文

一、在情境游戏中学习数学

创设良好的情境能让孩子全神贯注到数学学习活动中来,却“忘了”自己在学习,更不会觉得数学枯燥、对数学产生厌恶、惧怕感。比如,为了让孩子进一步认识人民币,以及进行一些简单的有关人民币的计算,我精心设计了孩子购物的游戏活动。我先用课桌拼成货架,然后摆上一些学习和生活用品(更多时候只摆包装盒子),并在商品上标上价格,还有一些小额的人民币。这些基本的东西准备好以后让部分同学扮演营业员,更多的同学

扮演顾客,让他们模仿超市购物,在此过程中他们很自然地对人民币进行了简单的加减计算;同时,教师只扮演一名普通的顾客,参与购物(其实主要观察幼儿的购物情况,并进行适当的指导)。孩子们不但很好地学习了数学知识,而且还培养了学生按需购物,注意节俭等精神品质。

二、在操作游戏中学习数学

幼儿园的教室里一般都有各种各样的积木和其它学习用品,这也为幼儿的操作活动提供了有利的条件。苏联著名教育学家霍姆林斯基曾经说过:“智慧之花开在手指尖上。”可见操作活动对促进幼儿掌握初步数学知识的作用是很明显的。幼儿只有通过自己的操作活动,才能借助于被操作的物体获得数学感性经验,整理数学表象,主动领会和构建起抽象的初步数概念。在操作性游戏中,我首先为幼儿的操作活动创造合适的环境,提供必要的条件。如在认数的教学活动中,我为每个幼儿提供人手一份的操作材料:冰棒棍、瓶盖,然后让幼儿在足够的场地里充分思考、探索、操作,在点数的同时学习记录,从而感知5以内的数量,同时让幼儿互相交流、讨论。这样,通过对具体的实物操作来发展幼儿初步的数概念,学习了初步的数学知识。这是一种让幼儿通过操作实物材料获得数学知识的一种游戏。为了让幼儿对立体图形产生空间感,初步体会到立体图形和平面图形的区别,我为他们准备了各种各样的立体模型,让他们充分发挥自己的

想象力搭建城堡,让他们在看、摸、拼的过程中对各种立体图形产生深刻的表象,达到寓教于无言之中。

查看全文

英文广告中数学分析论文

一、引人注目

日本广告学家川滕久先生说:“抓住大众的眼睛和耳朵,是广告的第一步。如果做不到这一点,广告就完全失去了意义。”的确,人们对新产品通常比较陌生,这时广告的作用便能引起公众对其的注意和认识。同时,人们能够理解广告所传达的信息,才会对其中的某些有益的信息感兴趣,并被说服接受广告中所言传的事物,最终采取行动。而简洁、一目了然的数字在赢得读者注意力方面就可产生意想不到的效果。

1.2001年可口可乐公司世界性广告宣传的主题是"Coca-colaEnjoy",北美地区有一则广告中的广告词是"FirstExperience",配的画面是一个男孩回味着可口可乐的口感就如他第一次kiss女孩的经历。广告词中没有华丽的辞藻,一个简单的firstexperience,暗示“第一次”的感受是使人终身难忘的。这样使读者把日常生活中的美好感受与Coca-cola联系在一起,就能唤起读者的兴趣,激发购买的欲望。

2.Atelevisionworthyofitsname,"THEONE".(Panasonic电视机广告)

"THEONE"是松下“画王”电视。用数字"ONE"来命名,精练生动,毫不夸张,但寓意深刻。以"THEONE"命名,造成了强烈的视觉冲击,赫然醒目。

二、增强说服力和真实性

查看全文

生活与数学分析论文

一、生活数学创设问题情境

心理学研究表明,恰当的问题情境能唤起学生的学习热情,而在我们的生活中每时每刻都存在着数学问题。因此,我们应该充分利用生活素材来教学,利用环境来教学,把生活中的生动事例和数学课堂教学与活动课程紧密地融合在一起,合理地组织教学,使学生自觉地进入问题情境,自觉地思考问题,主动地分析和解决问题。

例如有一位教师在教学直角坐标系时这样引入新课,老师直接问生学生谁能介绍一下自己家的具体位置,学生纷纷举手回答,都认为这题很容易。有一生说我家在营字村,老师又问营字村在哪?你家在营字村的具体方位说的清楚一点。学生不知所云。老师说这就是我们这节课所要解决的问题。一下子就把学生的注意力都吸引住了。学生急切的想要知道这是怎么回事,一个初中生怎么会连自己的家的地理位置都说不清了呢。老师顺利进入研究新知结段,新知内容结束后,老师又回到课前的问题,问学生这回你知道怎样来介绍你家的具体位置了吗?这样,通过再现生活场景,使学生真正理解了直角坐标系的生活意义。

二、生活数学提高应用能力

同志说过:人类认识事物的第二次飞跃比第一次飞跃更为重要,学习知识的目的在于应用。让学生在现实问题中看到数学问题,得到数学知识后再应用于新的现实,从而使数学成为一种“本领”这是我们进行数学教学要实现的一个重要目标。因此教师在平时的教学中,要重视根据学生已有的经验和知识设计活动内容和学习素材,注重培养学生的实践应用能力。

又如学生在学习“统计”一课后,就能试着举例说出生活中哪些地方要用到统计知识,如统计跳绳比赛成绩、订做校服统计、身高统计等。在这一基础上,我试着让学生为班级开展智力竞赛购买奖品制订采购方案,奖品要符合价钱均等、迎合大多数同学的需要等条件。同学们通过了解情况,收集数据,再加以整理和统计等一系列活动,获得了一个可行方案。由此可以看出学生经过一段时间的学习后,我告诉学生在生产、生活实际中很多地方都用到统计知识,且给学生布置了这样的实践作业,到马路上去统计一下你家所在地一小时内的车流量。告诉学生一定要注意安全。学生回来告诉我的不仅仅是车流量的事,还有汽车尾气等环保问题习后,已经开始把数学与现实生活联系在一起了,并能学以致用。这对学生今后的生活具有指导意义。

查看全文

初中学生学习数学分析论文

在长期的数学教学中,我一直在注意下列问题:1.为什么有大量的初中生对数学不感兴趣。2.初一、初二的差生是如何产生的。3.初中生数学学习方法欠缺的原因。而在学生的学习过程中,学习状况如何,对学生的心理会产生重大影响。学生学习的情绪将随着学习的状况而上下波动,许多心理问题源于学习的失败、挫折。学生的学习活动能顺利地进行,对学生的心理健康发展有重大意义。我希望能从研究学生的心理活动对学生学习数学的关系和作用中,去寻求对学生学习有帮助的、积极的心理活动,以培养学生正确的学习动机,良好的学习情绪和学习行为,从而达到学习能力的提高。

一、初中学生数学学习状况分析

(一)学生数学学习的心理分析

1.学生的数学学习无目的、无计划、无标准要求。对学了什么,应掌握什么,有什么作用是茫然的,有的学生竟说“成绩好有什么用,给我多少奖金”,学习具有盲目性。

2.学生对数学学习不主动、自觉性差,对学习内容的理解和学习任务的完成是被动消极的,学习本是自己的事,却常推委、拖拉或希望同学帮忙,所以同学间常出现抄作业现象,学习具有依赖性。

3.学生有上进的心理,但缺乏勤奋刻苦的学习精神,学习兴趣不浓也不愿培养,不作意志努力,学习中思想常常走神或学习时间内干其他事情,具有学习意志不坚定性。

查看全文

初中学生学习数学分析论文

一、初中学生数学学习状况分析

(一)学生数学学习的心理分析

1.学生的数学学习无目的、无计划、无标准要求。对学了什么,应掌握什么,有什么作用是茫然的,有的学生竟说“成绩好有什么用,给我多少奖金”,学习具有盲目性。

2.学生对数学学习不主动、自觉性差,对学习内容的理解和学习任务的完成是被动消极的,学习本是自己的事,却常推委、拖拉或希望同学帮忙,所以同学间常出现抄作业现象,学习具有依赖性。

3.学生有上进的心理,但缺乏勤奋刻苦的学习精神,学习兴趣不浓也不愿培养,不作意志努力,学习中思想常常走神或学习时间内干其他事情,具有学习意志不坚定性。

4.学生学习有了一知半解就感到满足,但遇到困难又垂头伤气,遇难而退或绕道而行,得过且过,致使部分学生学习成绩难以提高,甚至下滑,学习缺乏思想性。

查看全文

高一新生学习数学分析论文

一、学会预习是学好数学的关键

预习就使学生在老师讲课之前独立地自学新课的内容,做到初步理解并为上课做好知识准备和心理准备。学会预习是尽快适应高中学习的关键一步,是高一新生对新知识的理解和运用,提高学习效率。

﹙一﹚明确意义是学会预习的前提

学会预习是现代高一新生的基本素质,预习意义在于:

1、培养良好的学习习惯。学会自觉学习,掌握自学的方法,为以后的学习打下基础。

2、预习有助于了解新课的知识点、难点,为上课扫除部分只是障碍。

查看全文

数学课程教学改革及路径研究

(一)、深化教学内容改革

1.加强数学知识之间的融会贯通。强调知识的关联性、系统性,加强同一门课程不同知识点、不同课程的相关性和交融性教学,比如增加极限、导数、积分和级数等关系的介绍;反复强调数学分析在高等代数、常微分方程等课程中起至关重要作用的知识点;每章结束及时给学生做一个小结,帮助学生做到融会贯通。

2.加强数学知识来源、动机的介绍。每讲一个重要知识点时,多问几个为什么,多讲几个为什么,还原历史本来面目,激发学生的学习兴趣,让学生做到闭卷思索,充分享受数学之美。

3.增加数学思想史,数学人物传记等相关内容。例如,在讲牛顿-莱布尼兹公式的时候,可以把二人的历史故事讲给同学们听。对重要数学名词、数学家等用中英文同时标注,方便同学们查阅其它参考文献。

4.在教学内容中融入数学建模思想,增加实践性教学。结合简单有趣的数学模型,在理论知识和丰富的现实之间架起桥梁,增强数学知识的目的性,体现数学知识的应用价值。在教学中,将数学建模思想与具体的教学内容融会贯通,通过培养学生自主学习和综合运用所学知识解决实际问题的能力,激发学生的创造性。例如在进行“定积分的定义”的教学中,通过对涉及到几何知识“平面图形的面积”,物理知识“变力沿直线做功”等具体实例作分析并进行数学抽象,将其归纳为数学模型,进而导出定积分概念。

(二)、注重教学方法的改革

查看全文

数学解析学习心得感言

数学分析是数学中最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用方面起着特别重要的作用。从近代微积分思想的产生、发展到形成比较系统、成熟的“数学分析”课程大约用了300年的时间,经过几代杰出数学家的不懈努力,已经形成了严格的理论基础和逻辑体系。回顾数学分析的历史,有以下几个过程。从资料上得知,过去该课程一般分两步:初等微积分与高等微积分。初等微积分主要讲授初等微积分的运算与应用,高等微积分才开始涉及到严格的数学理论,如实数理论、极限、连续等。上世纪50年代以来学习苏联教材,从而出现了所谓的“大头分析”体系,即用较大的篇幅讲述极限理论,然后把微积分、级数等看成不同类型的极限。这说明了只要真正掌握了极限理论,整个数学分析学起来就快了,而且理论水平比较高。在我国,人们改造“大头分析”的试验不断,大体上都是把极限分成几步完成。我们的做法是:期望在“初高等微积分”和“大头分析”之间,走出一条循序渐进的道路,而整个体系在逻辑上又是完整的。这样我们既能掌握严格的分析理论,又能比较容易、快速的接受理论。

我们都知道,数学对于理学,工学研究是相当重要。在中国科技大学计算机应用硕士培养方案中,必修课:组合数学、算法设计与分析,高级计算机网络、高级数据库系统,人工智能高级教程现代计算机控制理论与技术。论文参考山西大学通信与信息系统硕士培养方案中,专业基础课:(1)矩阵理论(2)随机过程(3)信息论与编码(4)现代数字信号处理(5)通信网络管理:其中有运筹学内容,属于数学。(6)模糊逻辑与神经网络是研究非线性的数学。大连理工大学微电子和固体电子硕士培养方案中,必修课:工程数学,专业基础课:物理、半导体发光材料、半导体激光器件物理西北大学经管学院金融硕士培养方案中,学位课:中级微观经济学(数学)中级宏观经济学中国市场经济研究经济分析方法(数学)经济理论与实践前沿金融理论与实践必须使用数学的研究专业有:理工科几乎所有专业,分子生物学,统计专业,(理论、微观)经济学,逻辑学而这些数学的基础课就有一门叫做数学分析的课程!数学是所有学科的基础,可以说自然学科中的所有的重大发现和成就都离不开数学的贡献,而数学分析是数学中的基础!基础中的基础!

正因为如此,我深刻地认识到基础的重要性。经过本学期,我已学习了极限理论,单变量微积分等知识,其中极限续论是理论要求最高的,积分学是计算要求最高的部分。两者均是我学习中的困难。在本书中,以有界数集的确界定理作为出发点,不加证明地承认该定理,利用它证明了单调有界数列的极限存在定理,然后逐步展开证明了其他几个基本定理。定理虽易记诵,但对于理解的要求甚高,举例来说,在课后习题中有这样一题,证明单调有界函数存在左右极限。这题着实将我难住许久许久,尽管该题在数学分析中只是初级的难度,但初学者的我起初甚是无解。工作总结写到这里,我又发现我的一个问题,当然这个问题也是共性的。许多同学在学习数学分析的过程存在着这样的问题:上课能听懂,课后解题却不知所措。这一问题的产生由于一方面对基本概念、基本定理理解得不够深入,对定理的条件、结论理解得不够贴切,对各部分知识之间的联系区别不甚清楚。在极限续论中,由于内容相当抽象,在老师一次次的详细讲解下,上课基本能听懂,但这就可能是大学与高中最大的区别,特别是我的专业要求——理论要求,自己不反思,不更深刻去想,去悟,想学好很难,所以另一方面,做题太少,类型太少,并且对做过学过的题目缺少归纳总结,因而不清楚常见的题目都有哪些类型,也不明了各类型题目常常采用什么方法,用什么知识去解释这些理论问题,总之,是心中无数。著名数学家、教育家乔治•波利亚说过:“解题可以是人的最富有特征性的活动••••••假如你想要从解题中得到最大的收获,你就应该在所做的题目中去找出它的特征,那些特征在你以后求解其他问题时,能起到指导的作用。”特征,的确每位老师在讲课时都会将同类题一起讲解,这对我们的帮助是相当大的,在寒假,我重温了一下我的数学分析书和相关资料,从中,我发现在特征中显现出我曾经并未发现的,并未熟知的,甚至将我某些一学期都未曾搞清的问题驾驭自如,免费论文触类旁通!

尽管我们要把理论学好学扎实,但我自己也要培养实际操作能力,在本书与高等数学中都有积分计算,某些积分计算往往是难到要做好几小时的,在老师的推荐下买了吉米多维奇数学分析习题集题解,很有用,这书就好比是字典,题典,有不会,我就向它寻求适当的解法,有时,闲暇之余还会与同寝室同学共同研究方法的优劣,我发现我的解法往往麻烦繁琐。蒋科伟,吕孙权的做法有时可作为我修改的借鉴,其实,作为一名数学专业的学生来说,应该具有团队配合的意识,加强对实际应用知识的学习,更多关注学科的变化,培养对问题的思考。在研究积分题的过程中,我巩固了所学的积分概念,有效地提高我的运算能力,特别是有些难题还迫使我学会综合分析的思维方法。写到这我想起高中老师曾讲过在不等式证明中的综合法,原来在高中我已接触了大学知识,忽然又发现高中老师讲过许多上海高考都不考的知识,都是对我大学学习的良好铺垫,受益匪浅。实践出真知,至理啊!在自学高等数学期间也有过困难,有时感到学的太多,杂了。遇到困难,幸好有数学分析这门课给与理论支持!在统计班同学考试资料的支持下,我还是多少学到点东西与解题技巧的。这很是让我感到欣慰啊。

现在是科技的时代,在掌握好基本运算后我们接触了数学软件——Mathematica。该软件是应用广泛的数学软件,它不仅可以进行各种数值运算,而且可以进行符号运算、函数作图等。此软件使我理解导数、微分概念,理解泰勒公式,函数的N次近似多项式及余项概念,了解N次近似多项式随N增大一般是逐步逼近原函数的结果。熟悉了Mathematica数学软件的求导数和求微分命令,以及求n阶泰勒公式命令和求函数的n次近似多项式命令。不仅如此,我还通过它理解了不定积分、变上限函数和定积分概念,了解定积分的简单近似计算方法。这些正如诺基亚的广告词:科技以人为本。有了这些,对于我们来说,计算不再是困难,在高等数学的计算部分的自学中也可操作自如,再加上我的英语基础较好,在寒假下载了MATHEMATICA6操作软件,初试时还是有难度的,但在老师下发的操作资料中还是有很强的辅助作用的。现在数学给了我自信,让我寻找其中的乐趣!

在这第一学期,老师对我的帮助太大了!原来的我虽然数学基础较好,但初学分析我是真的一筹莫展,这时,老师对我学习中的的问题耐心又仔细地回答,让我在一次次郁闷中寻找到真知!正因为老师的不辞辛劳的帮助,让我取得现有的成绩,这还仅仅是一部分,老师对我思想与在带班级上也给出过帮助,让我各方面都在原有的基础上得到巨大的提高,使我更能看清自己的能力与潜力,老师谢谢你对我在一学期的帮助,我会继续努力的,尽管我离班级学习最好的同学差距甚远,但我不会放弃努力与奋斗的目标,我会达到更高的数学领地,取得更好的成绩.

查看全文

高师小学教育论文

1教学现状

1.1关于生源

优秀的生源质量是培养合格毕业生的保证.目前小学教育专业属于本科二批录取,由于对小学教师社会地位的偏见,男女学生比例严重失调.学生的高考入学成绩是学生学习能力和学习方法的综合反映,当然也与学校的教学传统、学生的学习环境、学习氛围等因素有关.初等教育学院数学方向的学生绝大多数是按其报考志愿录取的,但学生的高考志愿往往并非完全出自学生的个人意愿,如受高考分数线的限制或听从父母的意见等,因此部分学生选择数学方向带有一定的盲目性.客观来说,学生的高中数学基础相对薄弱,在接受数学分析的教学时可能具有一定的障碍.

1.2关于学生的数学观

由于数学学科自身的内容的特点,人们往往把数学等同于数学知识(在此主要指各个具体的数学结论、命题和公式等)的汇集,后者又常常被看成无可怀疑的真理.过去数学课程的内容主要局限于知识成分,很少涉及到数学思想、精神、学生情感、态度、价值观等观念成分.正如丁石孙教授所指出的:“我们长期以来,不仅没有认识到数学是一种文化,这种状况在相当程度上影响了数学研究和数学教育”.同时学生长期受应试教育的影响,造成对数学的片面理解—把数学等同于计算(认为数学就是做题)、把数学看成一些枯燥的概念和定理的集合、看不到数学与其他学科的联系、数学应用能力差.这与我们要达到的培养目标相去甚远.

1.3关于学生的学习动机

查看全文