水产论文范文10篇
时间:2024-05-04 01:00:49
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇水产论文范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
海洋水产养殖论文
一、系统模型总体设计
基于物联网的智能海洋水产养殖系统是专门为人工水产品养殖到销售环节设计的,采用无线传感技术、网络化管理等先进管理方法对养殖环境、水质、鱼类生长状况、药物使用、废水处理、运输环节等进行全方位管理、监测,具有数据实时采集及分析、食品溯源、生产基地远程监控等功能。海洋水产养殖物联网系统包含6个子系统及1个数据库,涵盖了渔业水产养殖、加工、运输及销售环节的物联网技术运用。
二、系统的组成
2.1水产品智能环境监测控制系统
水产品智能环境监测控制系统集成水质传感器、无线传感网、无线通信、嵌入式系统、自动控制等技术,可自动采集养殖水质参数,上报到智能平板终端及物联网云中心。并通过无线传输方式自动控制各继电器给给排水设备、增压泵、水温控制设备工作。
2.2水产品智能养殖管理系统
水产养殖实习改革论文
一、水产养殖专业介绍
对本专业学生的知识要求为:掌握现代生物科学(包括形态、分类、生态、生理生化、遗传学等)和环境科学(包括生态学、环境监测与分析、环境保护等)的基本理论;掌握水产经济动植物的增养殖技术、营养与饲料研发、病害防治、育种和渔业水域环境管理、调控和生态修复等方面的基本知识和基本技能;掌握主要养殖鱼类、甲壳类、贝类、藻类的人工育苗、育种和成体的集约化养殖等生产环节的关键技术;掌握内陆水域、浅海、滩涂的渔业资源和环境调查与规划的基本方法,了解现代化养殖工程、海洋渔业和水产品加工利用的基本知识;了解水产增养殖学和生命科学的前沿和发展趋势;熟悉有关水产资源保护、环境保护、水产养殖、捕捞和渔政等方面的方针、政策和法规。
二、水生生物资源与环境调查实习的历史沿革
无论从水产养殖专业的人才培养目标、培养要求,还是从专业特色来看,水产资源保护和渔业水域环境调控都是本专业的核心内容,因此本实习都有着十分重要的地位。本实习经历了多次更名,最早为“渔业资源调查(淡水生物)教学实习”,2006年更名为“渔业环境生物调查实习”,2008年更名为“水生生物调查实习”,2010年更名为“水生生物认识实习”,2014年更名为“水生生物资源与环境调查”,实习内容逐步丰富并跟进学科的发展和以生为本教学理念的变化。
三、水生生物资源与环境调查实习的目的和要求
通过本实习,要求学生进一步巩固课堂所学水生生物学的基本知识,初步掌握内陆淡水水域水生生物资源与环境调查研究方法,培养独立分析与研究问题的能力。通过实习观察各类水生植物、无脊椎动物、鱼类的形态特征、生活习性及所处水域生态环境特征,熟悉各类水生生物标本的采集、固定方法和鉴定方法。培养学生的团队协作能力、动手实践能力、文献查阅能力、口头表达能力和科技报告的撰写能力。
水产养殖研究论文
高密度鱼虾养殖池水体中残饵、粪便量大,水质易恶化。生物活性水质改良剂能将水体和底泥中的氨氮、硫化氢等有害物质转变为有益的物质,从而改良水质,促进鱼虾生长,增产增收。
常用的生物活性改良剂有下列6种:
1、光合细菌高密度鱼虾池水中所含的大量粪便和残饵,腐改后产生氨态氮、硫化氢等有害物质,污染水体和底质,造成鱼虾生长缓慢甚至中毒死亡。同时,水体富营养化后病原微生物滋生,鱼虾会感染发病,光合细菌能吸收水体中有的有毒物质,长成自己有效力的细胞,并形成优势群落,抑制病原微生物生长,净化水质。施用光合细菌,苗池每次用10-50毫克/升;成鱼、虾、蟹池首次用5-10毫克/升,以后用量减半,每次间隔7-10天。
2、硝化细菌在水环境中,硝化细菌可将由腐生菌和固氮菌分解或合成的氨或氨基酸转化为硝酸盐和亚硝酸盐,使水体和底泥中的有毒成分转化为无毒成分,净化水质。成鱼、虾、蟹池每次施用硝化细菌2-5毫克/升。
3、乳酸菌群乳酸菌属嫌气性菌群,靠摄取光合细菌、酵母菌产生的糖类形成乳酸。乳酸具有杀菌作用,能抑制有害微生物活动,致病菌增殖和无机物腐败;并能使木质和纤维素有机物发酵分解,有利于动植物吸收。
4、酵母菌群酵母菌属好气性菌群,它能利用植物根部分泌及其他有机物质产生发酵力,合成促根系生长及细胞分裂的活性物质。酵母菌能为乳酸菌、放线菌等提供增殖基质,为动物提供单细胞蛋白。
池塘水产养殖论文
1解决池塘水产养殖中水质问题是发展健康、高效生态水产养殖业的必然要求
在现代社会中,人民生活水平不断提高的同时,生态环境逐渐恶化,水质问题不可避免地对水产品健康生长造成危害,间接影响食用者身体健康,人们对水产品健康状况愈加重视。其次,大力解决池塘水产养殖中水质问题是当前环境下发展健康、生态、可持续水产养殖业的必然要求,也是推进池塘水产养殖业不断向前发展的必由之路。
2池塘水产养殖常见水质问题及危害
近年来,随着我国工业化进程的不断加快,自然生态环境状况不断恶化,植被锐减、大气污染、工业排放等因素都对自然水体构成严重危害,致使水质状态每况愈下,对池塘水产养殖业造成严重影响。综合来讲,池塘水产养殖常见水质问题主要表现为以下几类:
2.1池塘水体中PH值异常。
PH值即酸碱度,是衡量水体酸碱度的重要指标,PH值异常对池塘水产品的生长造成不良影响,甚至造成水产品死亡。当PH值过低时,水体呈现酸性,致使在水中生长的水产品血液PH值降低,水产品动物血液载氧能力下降,容易造成动物生理性缺氧,晕厥而浮出水面。当水体PH过高,水体呈碱性,此时水体腐蚀性强,容易对动物器官组织造成损伤,甚至引起动物大量死亡。此外,水体PH值异常还容易使水体中的微生物受到抑制,有机物常留水体,不易分解,水体毒性强,动物不易生存,更谈不上生长发育。
水产养殖中病害预防论文
1鱼塘清整与消毒
1.1鱼塘清淤
鱼、虾、蟹等经1年的饲养后,池底往往沉积着大量的食物残渣和排泄物,这些有机废物经腐烂、分解后在池底形成淤泥,而淤泥是细菌很好的培养基。因此,当淤泥沉积到一定厚度时,必须及时清除。银鲫类的出血病及罗氏沼虾、青虾等细菌性病害的发病率的上升与池底淤泥不及时清理有一定的关系。按国外对虾养殖经验来看,高密度虾类养殖,最好每年将池底的1层浮泥予以清除,其目的也是去除细菌滋生所需的营养源。另外,淤泥中有大量的寄生虫卵及孢子等,挖除多余的淤泥亦可大大减低侵袭性病害的发生率。一般来讲,池底淤泥厚度只需15cm左右即可。这样既使水体有一定肥度培育浮游生物,满足水产养殖类对天然饵料的需求,又可减少致病菌的滋生场所和细菌密度。因此,每年对鱼池清整时,必须清除池底多余的淤泥。
1.2池底曝晒与冰冻
池底每年需经15d左右的曝晒和冰冻,一是改良池底的土质,二是使池底淤泥中的致病菌和寄生虫卵及孢子的密度下降。池底经曝晒和冰冻的鱼池,养殖病害的发病率明显下降。但池底干枯时间过长则易引起草荒。
1.3药物清塘
淡水水产养殖论文
1淡水水产养殖如何影响渔业水域环境
1.1残饵、排泄物、分泌物
人类在进行水产养殖中,尤其是一些池塘养殖,水产养殖生物的营养能量来源是人工投饵,但不可避免的是人类投饵的食物并不能完全被养殖生物所吸收,就会导致无法被养殖生物所食的饵料排泄物及分泌物溶解出来的营养盐和有机质污染环境,这些有机物在淡水中进行分解转化会消耗大量的溶解氧,直接引起鱼虾贝类生长受抑、饵料系数降低,严重的还会出现窒息死亡。有机物的氨化作用会产生氨,氨会转变成亚硝酸盐,这是导致水产动物发生疾病的重要因素,比如一定数量的分子氨会直接损失鱼鳃表皮细胞,降低鱼类的免疫力。
1.2化学农药、抗生素、饲料添加剂
在淡水水产养殖中,人类为了加快促进生物的生长,维持水体的环境相对稳定性,防治病害的发生,会使用一些化学农药、抗生素和饲料添加剂,这些是现代水产养殖中非常重要的技术手段,但不可忽视的是,由于人为主观原因,导致了化学农药和抗生素的滥用,加上没有合理和使用搭配饲料添加剂,也会导致是残留和积累的水产品在水域中。
2治理措施
农场洼地效应水产养殖论文
1.“洼地效应”理论的引入分析
一是具有比较性。这是“洼地效应”的核心特征,是开展经济活动的基础,更是抓好产业布局的关键,决策群体可以通过不同区域之间的区位、交通、资源、人才、技术、政策等因素的比较,根据需要做出适合产业发展的最佳组合。二是具有趋向性。趋向性即是一种形象性的概括,也是遵循市场规律的体现,市场在资源配置过程中,由于供需、成本、政策导向、资源开发等关系的作用下,引发资本流向发生改变,形成新兴的产业集聚鄂尔多斯的羊绒、镜泊湖旅游、深圳特区都是“洼地效应”的趋向性体现。三是具有周期性。洼地效应也是一个历史发展过程,有其产生、发展、壮大、消亡的客观规律,起始“洼地效应”不是那么,伴随着“底层”设施建设、各项规章制度制定,“洼地效应”才会慢慢显现出来,随着资金、技术、劳动力的不间断流入,市场开始饱和起来,对外依赖开始加大,竞争逐渐严重,“洼地效应”逐渐消失,也跟水流一样,随着位势的降低速度不断趋缓。
2.八五五农场创造“洼地效应”的比较优势
前面我们从理论层面对“洼地效应”进行了简要分析,在汲取科学发展要素的基础上,下面我们以发展水产养殖业为重点,分析八五五农场产业发展的潜力和优势。
2.1区位优势
八五五农场,隶属黑龙江农垦总局牡丹江管理局,位于密山市境西北部与宝清县、七台河市交界处。场部距密山市区60里路程。结合自然条件下的地理环境和发展乳肉禽蛋产业的区位要求,八五五农场具备了发展水产养殖的区位优势。
智能体水产养殖论文
1智能体系统设计
1.1信息采集智能体设计信息采集智能体由信息采集模块和CC2530芯片组成,两者通过CC2530芯片的通用I/O口相连接,结构如图2所示。其控制核心为CC2530芯片,该芯片内部集成有A/D转换器、增强型8051处理器和ZigBee无线单元,负责对各类传感器进行管理,实现环境因子信息的采集、预处理和发送。信息采集模块中的温度传感器、溶解氧传感器、pH传感器等采集到的环境因子数据,通过调理电路,进行滤波和电压整定,并通过I/O口送入A/D转换器;增强型8051处理器读取A/D转换器数字化处理后的环境因子信息,最终送入ZigBee无线单元,该单元通过射频信号将数据传给该养殖池内的信息汇聚智能体。每个养殖池内可以在不同区域设有多个信息采集智能体,供信息汇聚智能体读取数据,以保证采集数据的可信度。
1.2信息汇聚智能体设计信息汇聚智能体结构如图3所示。该结构具有两项功能:一方面起到环境因子数据的中转作用,按现场监控智能体的要求,采用轮询的方式读取本池中各信息采集智能体发送来的数据,并发送给现场监控智能体;另一方面兼有图像采集与发送功能,利用串口CMOS摄像头进行养殖物图像采集,摄像头通过RS232与CC2530中的无线单元ZigBee相连,由无线单元ZigBee完成图像向现场监控智能体的传输。
1.3环境调节智能体设计环境调节智能体由无线收发模块和工控机组成,两者通过RS485相连,如图4所示。无线收发模块负责接收现场监控智能体通过无线通信发送过来的环境因子数据,进行解调,最终上传给工控机。工控机接收到数据后,首先根据其具备的知识对数据进行推理(推理模块),并将推理结果(调节任务)交给决策模块进行评价和决策。决策模块利用已有的知识和各种状态数据对推理结果进行评价和决策,如果具备执行该任务的能力,则交给控制模块去执行,否则启动通信模块与现场监控智能体进行协商。控制模块通过设备接口把任务交给执行机构去完成。决策模块还能通过人机界面向操作员分发报警、决策请求等事件,并接收操作员的输入信息。工控机强大的控制功能和可扩展性,使得一个环境调节智能体能够对所有养殖池的环境参数进行调节。系统中的执行机构主要有电磁阀(温度和pH调节)、水泵、增氧机、搅拌机等,用于调节养殖池中各环境因子,以提供养殖物生长的最佳环境。环境调节智能体对养殖环境的调节采取闭环控制,即执行机构在进行环境调节的同时,该智能体中的无线收发模块实时读取养殖池中的各项环境参数,并进行判断,任一项参数达到调节要求即关闭相应的执行机构。
1.4现场监控智能体设计现场监控智能体由信息收发单元和监控计算机组成,两者之间通过RS232/485总线连接,其功能结构与环境调节智能体基本相同。信息收发单元负责接收各养殖池中的IGA上传来的信号,并传送给监控计算机进行保存,监控计算机通过比较判断,如需要对环境进行调节,则通过信息收发单元以无线方式通知环境调节智能体工作,实现对养殖环境的闭环控制。监控计算机的另一项任务,是通过信息汇聚智能体定期采集养殖物质体的图像(此时信息采集智能体处于休眠状态),并利用专用软件对采集到的图像进行处理与诊断,如发现有病变嫌疑则及时报警,避免重大损失的发生。
1.5各智能体间的协作基于多智能体的协同水产养殖监控系统,通过多智能体之间的相互协作,来增强系统的监控能力,系统具有更好的灵活性和鲁棒性,便于适应多变的养殖环境,其协作模型如图5所示。下级智能体接收到上级智能体的任务请求后,根据自身的能力描述和当前状态,判断任务是否可以接受:如果处于故障状态或忙碌状态,则对该请求进行回绝;如果能接受这项请求,则返回接受信号,对请求的任务进行评
智能水产养殖论文
1硬件组成
水产养殖智能控制系统主要由台达TP04P一体机、溶氧温度传感器(RS485接口)、工业级GPRSDTU模块和智能监控管理系统等组成(图1)。TP04P文本一体机的COM2为内建PLC的主站口,通过MODBUSRTU协议读取溶氧温度传感器的溶氧值和温度值;COM3口为内建PLC的从站口(需新测试版软件的支持),用户借助互联网系统平台和DTU模块,通过COM3口远程监测数据和控制设备。
2控制要求
用户通过文本显示器可以读取当前水中的溶氧值和温度值,并且将其显示在首页。用户可以设定溶氧值的上下限,在旋钮旋至自动模式时,水中溶氧值一旦低于设定的下限值,便自动启动增氧机,水中溶氧值大于设定的上限值,便自动关闭增氧机。冲洗泵用于自动清洗传感器,系统工作时,清洗15minh。用户可以设定每天3个时间段强制增氧,当全设为0或错设时不起作用;可以设定每天两个时间点的自动投食,投食时长可以设定;可以设定万年历。用户的网页控制平台可以通过GPRSDTU模块实现远程监控(读取溶氧和温度、设定1个启动时间段、启停投食、远程控制增氧机的启停等)。
3实现过程
3.1溶氧传感器协议用户的溶氧传感器为MODBUSRTU协议,格式要求如下。①波特率:9600;②起始位:1;③数据位:8;④奇偶校验位:无;⑤终止位:1。本协议参照Modbus消息帧,由地址域、功能域、数据域和错误检测域4个域构成。①设备地址:1个字节,地址10为默认地址;②功能码:长度为1个字节;③数据域;④CRC校验。长度为2个字节,低字节在前,高字节在后。应答协议格式如表1所示。表1应答协议格式Tab.1Responseprotocolformat地址域功能码字节数数据区(高字节在前低字节在后)CRC161004H08H8字节低字节高字节注:数据区=温度电极电压(2B)+温度(2B)+溶解氧电极电压(2B)+溶解氧(2B)举例:发送:020400000008F1FF应答:020408102C290977179C279ED5
线粒体分子标记技术下的水产养殖论文
1D-loop区
线粒体DNA非编码区由两个tRNA基因分离,D-loop区域就处在这个非编码区中[2]。在线粒体DNA中,D-loop区是重链和轻链的复制起点,也称之为“控制区ControlRegion”,其进化压力较小,是线粒体DNA基因组序列和长度变异最大的区域,Horai等[3]发现该区域的基因变化速度比细胞核DNA和其他细胞器的基因快5倍,同时也是进化最快的部分。因此,选择D-loop区作为鉴定种群遗传状况的分子标记直接有效。利用D-loop的序列在群体遗传学上进行分析的工作在20世纪70年代就已经展开了,那时候仅仅用于分析区域内种间的亲缘关系。现今,D-loop区已经广泛被用作非常高效的工具来推断不同区域内种间或种内的亲缘关系和遗传状况。D-loop区中仍然细分为3个部分,中央保守区、终止序列区和保守序列区。其中终止序列区包含了线粒体DNA终止复制的相关序列,是变异最大的部分[4],最具研究和分析价值。在进行数据结果分析时,由D-loop序列分析得到的单倍型多样性指数和核苷酸多样性是两个评价群体遗传资源或者群遗传多样性的重要指标。
1.1野生群体遗传多样性分析
1.1.1D-loop部分序列分析D-loop序列分析中,由于并不是整个D-loop序列都发生碱基的插入或者替换,可以采取对保守序列区或者终止序列区的部分区域进行扩增。由于这两个部分的进化比中央保守区迅速得多,只对这一区段的序列进行分析也能代表物种的遗传多样性和进化过程。张仁意等[5]对青海4个不同湖水采集的155尾裸鲤(Gymnocyprisprzewalskii)个体的线粒体DNA的D-loop区中部分序列进行扩增,得到754bp的序列长度,分析发现155个样本中有34个单倍型,但4个群体中可鲁克湖群体的单倍型多样性和核苷酸多样性远低于其他种群;进一步的遗传分化系数的分析表明,该地区已经产生一定的遗传分化,但由于地理隔离的原因,系统发育树结果还没有发展出明显的单枝,加之该区域群体的遗传多样性偏低,需要进行重点保护。
郑真真等[6]对全球大青鲨(Prionaceglauca)进行了D-loop区中694bp扩增分析,采集了来自中东太平洋、中西太平洋、中东大西洋、西南大西洋和印度洋5个海域的165尾个体,分析发现145个单倍型,变异程度非常大。进一步分析后发现5个区域的大青鲨种群的单倍型和核苷酸都处于较高水平,种质资源较好;但是遗传分化指数显示5个区域存在强烈的基因交流,种群遗传分化水平较低。邹芝英等[7]采集了8尾长鳍鲤(Cyprinuscarpiovar.longfin),扩增得到600bp的部分序列,找到了与终止区域相关的6个特征序列;对这些特定的区域分析得到6个单倍型,13个变异位点,显示了较好的种质资源状况,核苷酸多样性数值与其他鱼类接近,遗传状况中等,由于该物种稀有且仅存在偏远地区,保护珍惜水产动物资源已经迫在眉睫。向燕等[8]为了了解3种鲟鱼:达氏鲟(Acipenserdabryanus)、中华鲟(A.sinensi)和史氏鲟(A.schrencki)亲鱼的遗传状况和遗传背景,对线粒体D-loop区部分序列进行分析,扩增得到400bp的序列,49尾亲鱼个体一共得到仅18个单倍型,并且对于单倍型系统发育树分析后,发现集中在6个单倍型中,说明这些群体很有可能来自同一母亲;不过各单倍型遗传距离较远,说明父本来自不同的个体;其结果提示,在生产中仍要采用不同单倍型进行人工繁育,以避免近亲而导致种质退化。
Kumazawa等[9]研究发现,D-loop的5'端和3'端有串联重复序列,这段的变异速率较快。Abinash等[10]在北美不同区域采集淡水扁头鲶(Pylodictisolivaris),对35bp的串联重复区进行分析检测,从美国35个水系采集了330尾样本,分析结果发现,在东南墨西哥湾的70%样本出现串联重复的变异,而采自密西西比河95%的样本和墨西哥湾西南沿岸的扁头鲶没有出现这个区域的变异;系统发育的计算结果表明,在70万年和205万年左右出现群体分流;从地理位置上看,密西西比河的支流进入墨西哥湾西南沿岸流域,而东南墨西哥湾为另一条流域;该结果表明种群的遗传结构受到地域特殊性的影响。D-loop区部分序列的结果分析能满足一定程度的遗传多样性和遗传状况分析,可以得到可靠的结果数据帮助人们进行资源保护和简单的育种工作。随着科技进步和测序水平的改善,进行全序列的测序渐渐进入研究者的视野,全长序列将获得更加完整和正确的结果。