神经网络论文范文10篇
时间:2024-05-03 12:28:15
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇神经网络论文范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
神经网络项目风险评估论文
[摘要]本篇论文我们介绍了基于粗集的BP神经网络识别项目的风险并评估项目风险。粗集(RS)与神经网络的集成反映了人类正常的思维机制。它融合了定性和定量的,精确和非确定的,连续和平行的方法。我们建立了粗集的神经网络并进行属性约简的混合模型,给出了软件项目风险在实际中的早期预警模型即评估模型,提出了有效的方法。
[关键词]软件项目风险管理神经网络粗集
本篇论文的中心是基于粗集的人工神经网络(ANN)技术的高风险识别,这样在制定开发计划中,最大的减少风险发生的概率,形成对高风险的管理。
一、模型结构的建立
本文基于粗集的BP神经网络的风险分析模型,对项目的风险进行评估,为项目进行中的风险管理提供决策支持。在这个模型中主要是粗糙集预处理神经网络系统,即用RS理论对ANN输入端的样本约简,寻找属性间关系,约简掉与决策无关的属性。简化输入信息的表达空间维数,简化ANN结构。本论文在此理论基础上,建立一种风险评估的模型结构。这个模型由三部分组成即:风险辨识单元库、神经网络单元、风险预警单元。
1.风险辨识单元库。由三个部分功能组成:历史数据的输入,属性约简和初始化数据.这里用户需提供历史的项目风险系数。所谓项目风险系数,是在项目评价中根据各种客观定量指标加权推算出的一种评价项目风险程度的客观指标。计算的方法:根据项目完成时间、项目费用和效益投入比三个客观指标,结合项目对各种资源的要求,确定三个指标的权值。项目风险系数可以表述成:r=f(w1,w2,w3,T,T/T0,S/S0,U/U0),R<1;式中:r为风险系数;T、T0分别为实际时间和计划时间;S、S0分别为实际费用和计划费用;U、U0分别为实际效能和预计效能;w1、w2、w3分别是时间、费用和效能的加权系数,而且应满足w1+w2+w3=1的条件。
EKF模拟神经网络学习算法研究论文
摘要:为了快速地构造一个有效的模糊神经网络,提出一种基于扩展卡尔曼滤波(EKF)的模糊神经网络自组织学习算法。在本算法中,按照提出的无须经过修剪过程的生长准则增加规则,加速了网络在线学习过程;使用EKF算法更新网络的自由参数,增强了网络的鲁棒性。仿真结果表明,该算法能够快速学习、良好的逼近精度和泛化能力。
关键词:模糊神经网络;扩展卡尔曼滤波;自组织学习
模糊神经网络起源于20世纪80年代后期的日本,由于其简单、实用,已经被广泛应用在工业控制、系统辨识、模式识别、数据挖掘等许多领域[1~4]。然而,如何从可用的数据集和专家知识中获取合适的规则数仍然是一个尚未解决的问题。为了获取模糊规则,研究人员提出了不同的算法,如文献[5]利用正交最小二乘算法确定径向基函数的中心,但是该算法训练速度比较慢;文献[6]提出了基于径向基函数的自适应模糊系统,其算法使用了分层自组织学习策略,但是逼近精度低。扩展卡尔曼滤波(EKF)算法作为一种非线性更新算法,在神经网络中得到了广泛应用。文献[7]利用扩展卡尔曼滤波算法调整多层感知器的权值,文献[8]利用扩展卡尔曼滤波算法调整径向基函数网络的权值。
本文提出了一种模糊神经网络的快速自组织学习算法(SFNN)。该算法基于无须修剪过程的生长准则增加模糊规则,加速了网络学习过程,同时使用EKF调整网络的参数。在该算法中,模糊神经网络结构不是预先设定的,而是在学习过程中动态变化的,即在学习开始前没有一条模糊规则,在学习过程中逐渐增加模糊规则。与传统的模糊神经网络学习算法相比,本算法所得到的模糊规则数并不会随着输入变量的增加而呈指数增长,特别是本算法无须领域的专家知识就可以实现对系统的自动建模及抽取模糊规则。当然,如果设计者是领域专家,其知识也可以直接用于系统设计。本算法所得到的模糊神经网络具有结构小、避免出现过拟合现象等特点。
1SFNN的结构
本文采用与文献[9]相似的网络结构,如图1所示。其中,r是输入变量个数;xi(i=1,2,…,r)是输入语言变量;y是系统的输出;MFij是第i个输入变量的第j个隶属函数;Rj表示第j条模糊规则;wj是第j条规则的结果参数;u是系统总的规则数。
经济神经网络活动分析论文
摘要经济活动通常表现为复杂的非线性特性,针对这种特性,给出了用人工神经网络(ANN)模型建立经济活动的预测模型的原理和方法,并描述了构筑于神经网络方法之上及其与神经网络方法相结合的先进的模型方法,为刻画复杂的、非确定的或信息不完整的经济活动对象提供了思路。
关键词经济活动预测模型人工神经网络
经济活动诸如商品价格走势、生产活动的产量预测、加工的投入产出分析、工厂的成本控制等方面都是重要的技术经济层面。定量化的经济活动分析是经济学研究的必由之路,而建模是量化分析的基础,这是因为模型为科学分析和质量、成本等控制提供了理论依据。本文针对经济活动中大多数研究对象都具有的非线性特点,给出了用人工神经网络(ArtificialNerveNetwork)模型建立经济活动的预测模型的原理和方法,并描述了神经网络与各种先进的建模方法相结合的模型化方法,为经济活动的分析、预测与控制提供了理论基础。
1神经网络模型方法
现实的经济系统是一个极其复杂的非线性系统,客观上要求建立非线性模型。传统上使用回归与自回归模型刻画的都是线性关系,难于精确反映因变量的变化规律,也终将影响模型的拟合及预报效果。为揭示隐含于历史记录中的复杂非线性关系必须借助更先进的方法———人工神经网络(ANN)方法。
人工神经网络具有并行处理、自适应、自组织、联想记忆及源于神经元激活函数的压扁特性的容错和鲁棒性等特点。数学上已经证明,神经网络可以逼近所有函数,这意味着神经网络能逼近那些刻画了样本数据规律的函数,且所考虑的系统表现的函数形式越复杂,神经网络这种特性的作用就越明显。
BP神经网络预测论文
[摘要]为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。
[关键词]MATLABBP神经网络预测模型数据归一化
一、引言
自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。
二、影响因素
刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。
BP神经网络预测应用论文
摘要人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。
关键字神经网络,BP模型,预测
1引言
在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。
2BP神经网络模型
BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。
PSOBP神经网络研究论文
摘要基于粒子群优化的算法具有全局随机搜索最优解的特点。本文尝试把PSO算法和神经网络权值训练的常用算法BP算法结合起来进行数据的训练,实现对一组数据的训练,并对结果与BP算法的训练结果进行了对比,得到了较好的效果。
关键词神经网络;反向传播算法;PSO算法;适应度函数
人工神经网络是由人工神经元互连而成的网络,它从微观结构和功能上实现对人脑的抽象和简化,具有许多优点。对神经网络的权值系数的确定,传统上采用反向传播算法(BP算法)。BP网络是一种多层前向反馈神经网络,BP算法是由两部分组成:信息的正向传递与误差的反向传播。在反向传播算法中,对权值的训练采用的是爬山法(即:δ算法)。这种方法在诸多领域取得了巨大的成功,但是它有可能陷入局部最小值,不能保证收敛到全局极小点。另外,反向传播算法训练次数多,收敛速度慢,使学习结果不能令人满意。
粒子群优化算法(ParticleSwarmOptimizer,PSO)是一种进化计算技术(evolutionarycomputation)。源于对鸟群捕食的行为研究,PSO中,每个优化问题的解都是搜索空间中的一只鸟,我们称之为粒子。所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。如果用粒子群算法对神经网络的权值进行训练,会得到较快的收敛速度,而且可以避免局部最值得出现。研究表明PSO是一种很有潜力的神经网络算法。
本文提出了一种基于PSO算法的BP网络学习算法,并通过MATLAB7.0实现对一组简单的向量进行训练对PSO—BP算法和BP算法进行了对比,试验结果说明PSO—BP算法适合训练BP网络,并且也有希望应用于其他种类的前向网络的训练。
1PSO算法
神经网络信息论文
[摘要]本文从生物神经元的角度简单阐述了人脑高级思维的形成机制。通过对反射、认知、创造等概念的重新定义,全面的解析人脑的工作原理,以及在这一运行机制下对于外界所反应出来的相关现象。
[关键词]反射认知创造神经网络人工智能
一、生物神经网络系统
生物神经系统是以神经元为基本单位,神经元的外部形态各异,但基本功能相同,在处于静息状态时(无刺激传导),神经细胞膜处于极化状态,膜内的电压低于膜外电压,当膜的某处受到的刺激足够强时,刺激处会在极短的时间内出现去极化、反极化(膜内的电压高于膜外电压)、复极化的过程,当刺激部位处于反极化状态时,邻近未受刺激的部位仍处于极化状态,两着之间就会形成局部电流,这个局部电流又会刺激没有去极化的细胞膜使之去极化等等,这样不断的重复这一过程,将动作电位传播开去,一直到神经末梢。
神经元与神经元之间的信息传递是通过突触相联系的,前一个神经元的轴突末梢作用于下一个神经元的胞体、树突或轴突等处组成突触。不同神经元的轴突末梢可以释放不同的化学递质,这些递质在与后膜受体结合时,有的能引起后膜去极化,当去极化足够大时就形成了动作电位;也有的能引起后膜极化增强,即超极化,阻碍动作电位的形成,能释放这种递质的神经元被称为抑制神经元。此外,有的神经元之间可以直接通过突触间隙直接进行电位传递,称为电突触。还有的因树突膜上电压门控式钠通道很少,树突上的兴奋或抑制活动是以电紧张性形式扩布的,这种扩布是具有衰减性的。
图1
函数神经网络芯片分析论文
摘要:ZISC78是IBM公司和Sillicon公司联合生产的一种具有自学习功能的径向基函数神经网络芯片,文中主要介绍了ZICS78芯片的功能、原理,给出了ZISC78神经网络芯片在舰载武器系统中进行船舶运动实时预报的应用方法。
关键词:ZISC78;径向基函数神经网络(RBFNN);实时;预报
1引言
神经网络是近年来得到广泛关注的一种非线性建模预报技术。它具有自组织、自学习、自适应和非线性处理、并行处理、信息分布存储、容错能力强等特性,对传统方法效果欠佳的预报领域有很强的吸引力。基于神经网络的非线性信息处理方法已应用于军事信息处理及现代武器装备系统的各个方面,并有可能成为未来集成智能化的军事电子信息处理系统的支撑技术。该技术在一些先进国家已部分形成了现实的战斗力。
船舶在波浪中航行,会受到风、浪和流的影响,因而将不可避免地发生摇荡运动。严重的摇荡会使船员工作效率下降、物品损坏、军舰的战斗力下降。如果能够预知未来一段时间船舶的运动情况,不仅有利于尽早采用先进控制算法控制舰载武器平台隔离船舶运动的影响,使其始终稳定瞄准目标,而且还可获得未来一个海浪周期内的船舶运动情况,以研究船载武器上层的控制策略,从而提高火力密度,因此,有必要研究在海浪中具有一定精度的海浪中船舶运动的短期预报。此外,如能有效准确地预报船舶的横摇运动,对于提高船舶的耐波性和适航性也有重要意义。
国内外学者也将神经网络用于船舶运动预报研究,但往往没有考虑实时性等实现问题,因而不能实用化。神经网络实现技术是神经网络研究的一个重要方面。神经网络实现可分为全硬件实现和软件实现两种。目前神经网络的实现还主要以软件模拟为主,由于现行的冯诺曼计算机体系结构不能实现并行计算,因而神经网络软件的实时应用还受到一定限制。
神经网络地形分析论文
1引言
在水利及土木工程中经常会遇到地形面,地形面是典型的空间自由曲面,地形面在给出时,往往只给出一些反映地形、地貌特征的离散点,而无法给出描述地形面的曲面方程。然而有时需要对地形面进行描述,或者当给出的地形面的点不完整时,需要插补出合理的点。以往大多用最小二乘法或其它曲面拟合方法如三次参数样条曲面、Bezier曲面或非均匀有理B样条曲面等,这些拟合方法的缺点是:型值点一旦给定,就不能更改,否则必须重新构造表达函数;在构造曲线曲率变化较大或型值点奇异时,容易产生畸变,有时需要人为干预;此外,这些方法对数据格式都有要求。
神经网络技术借用基于人类智能(如学习和自适应)的模型、模糊技术方法,利用人类的模糊思想来求解问题,在许多领域优于传统技术。用神经网络进行地形面构造,只要测量有限个点(可以是无序的),不需要其它更多的地形面信息和曲面知识,当地形面复杂或者是测量数据不完整时,用神经网络方法更具优势,而且还可以自动处理型值点奇异情况。
本文提出用BP神经网络结合模拟退火算法进行地形面的曲面构造。
2模型与算法的选择
为了对地形面进行曲面构造,首先要有一些用于神经网络训练的初始样本点,对所建立的神经网络进行学习训练,学习训练的本质就是通过改变网络神经元之间的连接权值,使网络能将样本集的内涵以联结权矩阵的方式存储起来,从而具有完成某些特殊任务的能力。权值的改变依据是样本点训练时产生的实际输出和期望输出间的误差,按一定方式来调整网络权值,使误差逐渐减少,当误差降到给定的范围内,就可认为学习结束,学习结束后,神经网络模型就可用于地形面的构造。
BP神经网络控制优化论文
摘要以加热炉控制系统为研究对象,提出了一种基于遗传算法改进的BP网络优化PID控制参数方法,并与经典的临界比例度—Ziegler-Nichols方法进行比较。仿真结果表明该算法具有较好的控制效果。
关键词PID控制;BP神经网络;遗传算法;参数优化
1引言
由于常规PID控制具有鲁棒性好,结构简单等优点,在工业控制中得到了广泛的应用。PID控制的基本思想是将P(偏差的比例),I(偏差的积分)和D(偏差的微分)进线性组合构成控制器,对被控对象进行控制。所以系统控制的优劣取决于这三个参数。但是常规PID控制参数往往不能进行在线调整,难以适应对象的变化,另外对高阶或者多变量的强耦合过程,由于整定条件的限制,以及对象的动态特性随着环境等的变化而变化,PID参数也很难达到最优的状态。
神经网络具有自组织、自学习等优点,提出了利用BP神经网络的学习方法,对控制器参数进行在线调整,以满足控制要求。由于BP神经网络学习过程较慢,可能导致局部极小点[2]。本文提出了改进的BP算法,将遗传算法和BP算法结合对网络阈值和权值进行优化,避免权值和阈值陷入局部极小点。
2加热炉的PID控制