桥梁设计论文范文10篇

时间:2024-05-09 02:09:35

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇桥梁设计论文范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

桥梁设计论文

桥梁桩加固设计论文

1桥梁桩出现存在的难题

上个世纪末我国公路建设高速发展,而在全国进行大范围公路建设中因为桥梁桩承载力好,节省用料和人力的优点得到广泛运用。桥梁的桥体的承载力主要就是靠桥梁桩来承担,因此桥梁桩的基础加固是公路工程建设的基本保障。尤其是在我国这种地形地质条件相对复杂的山区,公路桥梁路段多且承载量要求较高。但是,我国大范围的桥梁桩基本上是钢筋混泥土进行建设的,很容易出现一些问题。1)水分的自然侵蚀。首先是钢筋混凝土中的钢筋极容易被渗透的水分侵蚀,破换钢筋的支撑力。当水分的侵入混凝土中的时候还会因为同碱性的水泥融合产生膨胀力,甚至导致混凝土裂开从而破坏掉整个桥梁桩,这个时候就会影响到整个桥梁的稳固,因此仅仅是自然的长时间的侵蚀就会造成整个桥梁桩的不稳定。2)极端气候的破坏作用。除了水分的渗入会导致桥梁桩被破坏,低温作用到水上会导致混凝土结构桥梁桩小孔中的水分结冰膨胀。而长时间的气温变化作用的不断循环,就会导致混泥土结构的逐渐剥离甚至瓦解,事实上这个过程并不长,尤其是在地质和气候比较复杂的地区,因此要特别注意防范和处理这种情况的发生。

2加固桥梁桩方法

桥梁桩对整个桥梁乃至整个公路的运行的重要作用不言而喻。因此在防范桥梁桩的损害问题上,必须迅速采取积极的应对处理方法,而这些方法必须是科学地针对桥梁桩的特点和问题,能够切实地保障桥梁桩的稳固,主要从以下三个方面坚持:1)做好防范工作。为了保障桥梁的稳固性,除了针对进行桥梁设计之外,桥梁桩的本身质量要进行较为严格的鉴定并且明确后期追加的加固的方案。加固设计方案无外乎三个方面:硬度方面,强度方面和持久度方面。首先在硬度方面就是桥梁桩建造的稳固性;强度方面就是确定保证桥梁桩的整体性的稳固;持久度方面就是在建造的时候采用耐性良好的同时还要方便之后进行损伤部分的修复。从这三个方面着手,可以比较全面的做好桥梁桩的稳固性的防范工作。2)坚持效益最大化。在工程设计和建造中最基本的原则除了安全稳固之外就是经济,以最小的原料和人工投入获得最优的经济效益,这就要求工程建造人员在桥梁和建设的时候做到效益最大化。3)务求实事求是。在公路建设前桥梁桩做好各项加固工作之外还必须实事求是,不能盲目加固浪费工程建设。合理的加固技术必须在原有的公路建设基础上不仅起到实际加固的效果还可以有效控制工程再建的风险,降低工程建设的成本。

3桥梁桩加固设计的基本方案

3.1增加桩基进行加固

查看全文

桥梁加固设计论文

1桥梁现状及病害成因

桥址区地形较平缓,跨越的沟渠中部局部地段为负地形,大致呈锅底状,雨季排水较为不畅通,并经常存有死水滩,随后几日,缓慢下渗至地下深处。根据原始勘察资料,桥址区0~10.0m范围内黄土(粉土)具Ⅱ级非自重湿陷性(中等),湿陷系数δs=0.023~0.080,自重系数δzs=0.015~0.034,自重湿陷量Δzs=6.19cm,总湿陷量Δs=56.88cm,桥台基础持力层位于该地层上,虽采用0.5m厚灰土垫层进行地基处理,但处理范围仅在基础之下局部范围内,对基础周围地表水的下渗未起防水作用,从而使地表水扩散运移至基础以下湿陷性黄土之中,在荷载作用下,产生湿陷下沉。其下沉速度较为缓慢,且随季节具有一定的规律,在雨季期间,下沉较迅速,雨季后地下水下渗至地表深处时,下沉较为缓慢或停止。根据地勘报告,基底附加应力为203kPa,第一层土的平均附加应力+自重应力约为124.5kPa,大于9.4m以上土层的湿陷起始压力,故第一层土在上部荷载作用和浸水状态下,0~9.4m范围内将会产生附加湿陷变形,变形量为56.88-2.46=54.42cm。据以上综合分析,桥台地基沉降量主要由湿陷变形量和土层压缩变形量组成,其总的变形量为54.42+8.223=62.64cm,目前已沉降约33cm,完成总沉降的52.7%,以后还会继续下沉,因此对其进行加固是非常必要的。

2桥梁的加固设计

本文针对其出现的桥台整体沉降的病害提出了两个具体加固方案。

2.1方案一

a)在原两侧桥台前1.35m加设双柱式桥墩,形成(1.7+12.6+1.7)m跨径的双悬臂板结构,桥台的支撑作用慢慢消失,新的柱式墩主要起支撑主梁作用,b)铲除后期养护逐年增加的沥青混凝土,以减轻上部恒载,利用液压顶升设备将空心板抬升,恢复原桥面的设计标高。c)在墩顶原铺装层增设一层直径25mm的钢筋网用以承担墩顶负弯矩。d)墩盖梁达到设计强度后,顶升主梁,落梁于墩顶支座上,形成双悬臂结构,完成体系转换。e)将原桥的背墙和侧墙均相应进行加高,原桥台基础周围需做防水封闭处理,以防止其继续渗水下沉。

查看全文

大跨度桥梁设计论文

一、非线性地震反应分析

大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-△效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结构的弹塑性分析,这不仅是因为相对于几何非线性而言,结构的弹塑性性能对于结构的抗震性能影响较大,而且更由于问题的复杂性。所以国内外众多学者针对后者开展了大量的研究工作。在大跨度公路桥梁弹塑性地震反应分析的力学模型中,根据各种构件的工作状态,将结构简化为杆系结构是合理的,同时对计算而言也是非常经济的。若按构件所处的空间位置可把力学模型分为平面模型和空间模型两种。若按模型中所采用的单元应力水平的种类来分,又可分为微观模型(采用应力空间)和宏观模型(采用内力空间)两种。由于微观模型要求将结构划分为足够小的单元,尽管很有效但所需的计算量较大,只适用较小规模的结构或构件的非线性分析,因此在实际工作中应用的范围比较有限,所以这里仅按前一种分类方法来加以讨论。

在结构弹塑性地震反应分析中,构件恢复力模型的确定是基本的步骤而构件的恢复力关系又集中反映在滞回特性曲线上,基本指标有曲线形状、骨架曲线及其特征参数、强度、刚度及其退化规律、滞回耗能机制、延性和等效滞回阻尼系数等。国内外在这方面已进行了大量的试验研究并取得了相应的研究成果。在平面模型中,根据所采用的塑性铰类型可把它分为集中塑性铰模型和分布塑性铰模型两大类。在集中塑性铰模型中,有代表性的一种是Clough等于1965年提出的双分量单元模型,该单元模型采用两根平行杆来模拟构件,其中一根用来表示具有屈服特性的弹塑性杆,另一根用来表示完全弹性杆,非弹性变形集中于杆件两端的集中塑性铰处,该模型的最大不足是不能考虑构件刚度退化。另一种有代表性的是1969年Giber-son提出的单分量模型,它克服了Clough双分量模型的不足,同时只用两个杆端塑性转角来刻划杆件的弹塑性性能,而杆件两端的弹塑性参数又是相互独立的,因此应用起来较为简便。其缺点是基本假设中有地震过程中反弯点不能移动的限制,所以对一些与基本假设不甚相符的特殊情况其使用的合理性就受到了限制。

二、多点激振效应

通常桥梁结构的地震反应分析是假定所有桥墩墩底的地震运动是一致的。而实际上,由于地震机制、地震渡的传播特征、地形地质构造的不同,使得入射地震在空间和时间上均是变化的。即使其他条件完全相同,由于地面上的各点到震源的距离不同,它们接收到的地震波必然存在着时间差(相位差),由此导致地表的非同步振动。这一点已被地震观测结果所证实。因此,多点地震输入是更合理的地震输入模式。特别是大跨度桥梁结构,当地震波的波长小于相邻桥墩的跨度时,入射到各墩的地震波的相位是不同的,由于在桥长范围内各墩下的基础类型和周围的场地条件可能有很大的差别,因此入射到各墩的地震波的波形也可能是不同的。有关实际震害表明,入射地震波的相位差可增大桥跨落梁的危险性。所以就地震波传播过程中的多点激振效应进行研究是有很大的实际意义的。

从概念上看,仅考虑入射地震波的相位变化情况属于行波效应分析问题。若再考虑地震波的波形变化就属于地震波的多点输入问题。从计算方法上看,由于多点地震输入算法与同步激振的计算方法不同,因此必须重新推导结构体系的动力平衡方程。美国学者Penzien和Clough于1975年推导了多自由度体系考虑地震波多点输入时的动力平衡微分方程及求解方法,通过所谓的影响矩阵,实现了地震波的多点输入算法。这种方法后来被广泛应用,目前所有考虑地震波多点输入的结构地震反应时程分析算法均以此为基本出发点。

查看全文

桥梁施工中现浇盖梁支架设计论文

摘要介绍桥梁施工中现浇盖粱的支架选用、主要施工注意事项、计算要点及改进措施。关键词简支桥梁现浇盖板支架1概述盖梁,也称帽梁,一般设于墩柱顶部,是钢筋混凝土简支梁桥中的下部结构主要受力构件。墩柱顶盖梁,如采用现浇施工,其施工质量,不仅受控于混凝土配合比、浇灌方法,且与采用的支架紧密相关。只有选择了坚实的支架,使模板牢固、可靠,拼缝严密、接口顺直,能抵抗混凝土自重和施工荷载,操作人员能安全地进行各种施工作业,才能确保施工质量和安全,杜绝模板漏浆、胀模等质量通病,杜绝模板支撑倒塌等安全事故。墩柱顶盖梁现浇施工的支架型式,主要有自落地支架式、抱箍挑架式和埋设托架式等。自落地支架,即在盖梁下部的地面上立支柱,搭成落地满堂支架,然后在支架上铺设模板,如图10抱箍挑架式,即在盖梁下的墩柱上套钢板箍,拧紧套箍的拼接螺栓,然后利用套箍搭设支架并铺设模板,如图3。埋设托架式,即墩柱上预留水平孔,待墩柱混凝土拆模并有一定的强度后,向预留孔中穿人钢锭,然后利用钢锭两端悬臂部分搭设支架并铺设模板,如图2。2各种支架的计算要点支架设计时,计算承受的荷载包括:模板自重、新浇筑钢筋混凝土重量、施工人员和运输工具重量、倾倒和振捣混凝土产生的荷载及支架自重等。2.1纵横粱的设计计算各种支架中,模板下、支架顶的纵横梁的设计计算大同小异,一般可将之当作简支梁计算。设计计算时,先初选构件类型(如方木、槽钢或工字钢等),再根据最大弯矩或最大剪力的数据,选择构件型号及截面,验算构件的挠度、弯曲强度和抗剪强度。2.2自落地支柱的计算自落地支柱可当作两端简支的轴心受压构件计算,先初选构件类型(如钢管、型钢或门式架等),再根据最大轴力的数据,按计算值选择构件型号及截面,最后验算抗压稳定性和水平联系杆的竖向间距(即水平联系杆的道数),并按构造要求设计扫地杆、剪刀撑、抛撑和缆风绳等。如盖梁离地面高度较大,所在地区基本风力较大,则应考虑风荷载,并核算选择抛撑和缆风绳。2.3抱箍的计算抱箍所能承受的荷载可由抱箍与墩柱之问的摩擦力平衡,其摩擦系数μ由墩柱面的平整度和粗糙程度而定,一般可取为μ=0.3—0.5。设计时应选择拧紧螺栓的数量,并验算其抗剪强度,同时应验算抱箍钢板的局部抗剪强度和抗挤压强度。2.4托架钢锭的计算预埋托架的设计,除选择计算纵横梁外,还应对埋设的钢锭的规格和截面积进行计算,核实其最大弯、剪力和支座处挠度。支架型式的选用,应结合现场设备及施工条件与盖梁的高度,还应保证现浇盖梁的施工质量和操作安全。3支架型式的选用条件支架型式的选用,应结合现场设备及施工条件与盖梁的高度,还应考虑经济成本尽量能就地取材,并应保证现浇盖梁的施工质量和操作安全。各种支架的适用情况和注意事项见表1。自落地支柱可采用钢管、型钢或门式架等,根据施工设备状况及荷载经计算选用;无论采用何种支架,施工时都应按计算挠度值设预拱度,并应搭设足够宽度的操作面(一般每边不小于1m)和周边护栏(高度不小于1,2m);各种支架的护栏边,都应满挂密目安全网,以防止高空坠落。4各型支架的优缺点及改进措施4.1各支架优缺点①自落地支架式结构简单,但在荷载作用下支架变形较大,耗用材料数量较多,文明施工管理工作量较大。②采用抱箍挑架式,在盖梁施工中下部仍可通行,不占地面工作面,便于管理,但抱箍挑梁中钢箍与墩柱之间的摩擦系数的取值难以掌握,依墩柱表面的平整度或粗糙度而异,施工时易发生抱箍滑脱事故,支架能承受的荷载不高。③埋设托架式虽然下部可通行,不占用地面工作面,易于文明施工管理,能承受荷载较大,支架在荷载作用下变形较小,但在埋设钢锭和施工受载时,墩柱混凝土需具备一定强度,施工后在墩柱中留下小孔,影响墩柱外观,施工后宜用微膨胀混凝土填塞小孑L及墩柱表面处理工作。4.2各种支架的改进为提高自落地支架的承受荷载,而减少变形或沉降,可利用万能杆件拼装成桁式支架。桁式支架可设计为满堂式,也可设计为柱梁式。对于在河岸上现浇盖梁,如土质条件较差,做适当压实处理并经采取措施后,也可采用自落地支架。如在地面上先铺木板或槽钢,或浇筑混凝土地板,以增大地基受压面积。对于水上现浇盖梁,由于桩基、系梁及墩柱施工时,已搭设了水上操作平台,因此可利用在该操作平台上直接搭满堂支架。但必须验算操作平台的稳定性和沉降量,慎重采用。一般简支梁桥中,在桩基与墩柱间都设计有水+‘平系梁,因而在水上与土质条件差的地面上,如盖梁与系梁的高差不大,可利用系梁作为受力底座,在系梁面上搭设落地支架。但系梁的强度必须经过计,必要时加大系梁截面或加配钢筋。在使用抱箍挑架式时,为预防施工荷载过大造成钢板箍滑脱,宜采用高强度螺栓和双螺母拧紧抱箍,也可以采用两层抱箍互相支撑的方法,或在抱箍底部预埋钢筋,以加强支撑。但预埋的钢筋在使用后应割,做好墩柱外观处理。如施工荷载不大,可在墩柱中埋设型钢,利用埋设的型钢搭设支托架。另外在埋设托架中,经钢锭。对于埋设托架式,也可将埋设钢锭与工字钢改为埋设牛腿,再在牛腿上搭设支架并铺设模板.5结束语在上海市政工程多年的施工实施中,各类型支架按实地情况经常选用,无论在保证工程质量及支架的设置经验上,虽获益匪浅,但当支架选定后,对一些重点的处理尤应重视。如自落式支架落于地面上的地基整平、夯实、扩大承力面,落于构筑物上对构筑物的核实补强;抱箍、托架式施工完毕后对墩柱外观的处理等。

查看全文

现代桥梁结构设计论文

1我国现代桥梁结构设计的现状

就目前的发展来看,我国的桥梁结构设计的倾向如下:比较注重强度而忽视耐久性;重视强度极限而忽视使用极限;重视结构的建设而忽视结构的维护,这样的设计倾向直接导致了桥梁工程事故的不断发生,不利于和谐社会的发展。我国的桥梁设计理论和结构构造体系还有诸多需要完善的地方,在桥梁设计过程中,尤其在桥梁施工和使用期安全性上改进的空间还是比较大的。在结构设计中首先要选择科学合理、经济的方案,其次是结构分析与构件和连接的设计,还要运用规范的安全系数或可靠性指标给结构的安全性以最大的保障。

2我国现代桥梁结构设计的注意事项

2.1对于结构的耐久性问题要重视

在我国的桥梁建设过程中,很多时候都缺少建设前期所需要准备、视察及考证等工作,这是一大问题。周围的环境会在很大程度上影响到桥梁的建设和使用,不仅包括由于车辆超载而出现的疲劳情况,还包括桥梁结构本身的老化和损伤。我国从上世纪九十年代有些研究者就针对桥梁结构的耐久性进行了研究,但多集中在桥梁的材料及统计等方面,而对桥梁结构及设计的研究却是忽视的,还缺少以设计及施工人员为出发点改善桥梁的耐久性。设计人员所关注结构的计算方法比较多,而容易忽视总体构造的设计和一些细节处的把握。结构耐久性的设计应该有别于其他普通的结构设计,就现阶段而言,我国桥梁结构的耐久性研究应转变为定量分析而不是传统的定性分析。诸多研究实践表明一座桥梁是否能够安全使用,结构的耐久性发挥了很大的作用,经济性也包含在其中。

2.2充分重视桥梁的超载问题

查看全文

公路桥梁加固设计论文

1工程概况

根据大桥外观检测及荷载试验报告,目前大桥出现了混凝土表面蜂窝、麻面;保护层较薄,箍筋外露;底板混凝土剥落、钢筋外露锈蚀,翼缘板间渗水,预应力混凝土T梁梁体裂缝,横隔板断裂,盖梁裂缝和桩基露筋、部分支座出现局部脱空、老化、开裂和剪切变形、钢板锈蚀、防尘罩破损等现象。

2主要病害原因分析

2.1通行车辆

该桥修建于20世纪80年代,已经运营27年。原桥梁设计为一级公路桥梁,按照交通部《公路工程技术标准》(JTJ001-97)的规定,一般能适应将各种汽车折合成小客车的年平均日交通量为15000~30000辆。免费通行前交通量已经超过了原设计交通量的60.2%,免费通行后,交通量较免费通行前又增加19.8%。按照交通部《公路工程技术标准》(JTGB01-2003),免费通行后平均日交通量是四车道一级公路能适应将各种汽车折合成小客车的年平均日交通量上限30000辆的1.92倍,平均日交通量已经达到六车道高速公路能适应的年平均日交通量标准(45000~80000辆)。由上可见,限载前,该公路大桥车流量远超过当初设计标准,再加上超载车的数量和超载重量都越来越多,对桥面铺装、T梁、支座、盖梁、桥墩等各个承重部位均造成不利影响。

2.2T梁病害

查看全文

桥梁下部结构设计论文

1工程概况

海沽道规划为城市主干路,规划道路红线宽50m。本次工程范围为外环南路~东文南路,总长度约10.3km。沿线需跨越现状河道4处,新建4座桥梁跨越,分别为外环河中桥、洪泥河中桥、幸福河中桥、卫津河中桥。由于规划地铁1号线线位与海沽道主线重合,受地铁盾构影响的有洪泥河中桥、幸福河中桥、卫津河中桥3座桥梁。因此桥梁下部结构设计中应充分考虑与轨道交通1号线之间的相对关系,满足地铁盾构施工过程中要求的最小安全距离;同时对桥梁桩基采取有效的防护措施,在施工过程中进行必要的施工监测,以保障本工程的安全实施和使用。本文以洪泥河中桥为例,介绍海沽道工程受地铁盾构影响下桥梁下部结构设计及防护措施。

2水文地质情况

洪泥河全长25.8km,设计流量50m3/s,为区管二级河道,六级航道,性质为排水,规划上河口宽度为50m、下河口宽度为25m。现状洪泥河上河口宽度为45m、下河口宽度为25m、两侧放坡各10m;堤岸为土质边坡,边坡系数为1∶2.5。河底高程为-2.7m,堤顶标高为3.2~3.6m,洪泥河常水位为1.4m,洪水位为2.5m。根据区域地质资料和勘察,本工程所在场地为第四系全新统(Q4)海相、陆相及海陆交互沉积地层。从上而下地层呈层状分布,按成因分为8层,按力学性质可进一步分成15个亚层。该区域主要由杂填土、素填土、粘土、淤泥质土、粉质粘土、粉土组成,各层土水平方向上总体分布稳定,从上而下土质渐好。本工程特殊性岩土主要为人工填土及淤泥质土,填土土质松散,淤泥质土土质软对桥梁桩基施工有一定影响。

3地铁与海沽道线位相对位置关系及安全要求

3.1位置关系

查看全文

桥梁设计论文:公路桥梁的施工及处理透析

本文作者:潘志宏工作单位:云南昆明东川交通运输局

公路桥梁过渡段的架构方案

1.在桥头引道没有软土地基的情况下,若5cm的路桥过渡段的不均匀沉降差异是沉降控制标准,以0.4%来控制沉降坡差,则强度渐变段的长度至少不得低于13m。2.路桥过渡段的路基条件与地基条件在桥头引道路基填筑压实的作业过程中,采用的土工合成材料加筋路堤的做法,并不能起到有效阻止地基下沉的结果,也不能提高路基地基的承载力。而只有在地基有足够大的承载力的情况下,在行驶车辆荷载与路堤填土的自重荷载的共同作用下,没有造成结构破坏,而引起较大沉降的情况下,土工合成材料加筋路堤的效果才会显得明显。因此,公路路桥过渡段的地基条件要满足设计、施工规范的要求:要达到路基的工后沉降值保持在10cm以下,沉降差小于5cm,沉降坡差在0.4%的控制标准以内。3.公路桥梁过渡段的结构形式桥台台背路堤填铺土工格栅。在设计路桥过渡段路基施工时,要采取土工格栅工艺。当土体与土工格栅相结合,共同承受土体自身荷载以及行驶车辆荷载的同时,土工格栅能使土体充分发挥抗剪强度,并且能够使土体的侧向变形被约束,同时,路基填土的侧向位移现象也能被有效控制,因此,路基的整体稳定性大幅提升,也从而使路基的变形模量增大。在路基填土和土工木栅的摩擦作用下,上部荷载在路基中被重新分配,使桥台台背局部范围土中的垂直应力得到降低,从而提高了路基土体的承载力,也使路基的沉降量降低。因为水平填铺的土工木栅是有一定弹性的,即使有重大型荷载的车辆反复施压,而路基也几乎不会产生变形。由于路桥在过渡段施工途中,铺设的土工格栅起到了明显的效果。所以在路桥过渡段高填方路堤的施工中,可采用的是桥台台背回填加铺土工格栅的作业模式。

桥头软基施工

1.某高速公路工程桥头路基段,地表硬壳层薄,厚度在0.5~0.8m之间。下伏软土层深厚,达26.3~27.8m,流塑状,地基浅部断续分布0.5~2m厚的泥炭土,其下为淤泥质粘土,软土含水量高,孔隙比大,固结缓慢,对路基沉降和稳定性极为不利。填方高度3~6m,原设计采用粉喷桩处理,处理深度13m。通过分析搭板的受力状态,采取简支梁或者弹性地基的计算方法计算搭板的长度。根据规范要求计算,搭板的长度应在20m~30m范围内。可以结合工程的具体设计及施工情况,参考此计算方法,合理计算出搭板的长度。2.路桥过渡阶段施工结构桥台结构完工的时候,尽量调整一般填土路堤与过渡阶段路堤的施工,及采用具备同样压实能量的压实机械将两个路堤阶段的路面高度进行填压,如果采用大型机械不方便时,可以采用小型振动压实机械进行全部压实。除此之外,对路基沉降大的工点,比如桥头高路堤和软土路堤,除了需要采用必要的地基整治措施外,首先要对施工进行安排,直到静置预压符合要求为止。从路桥工程施工来看。如果充分了解工程地质条件,设计恰当结构,做好路桥过渡段地基整治,强化过渡段结构施工环节的控制,在其引道处,柔性路堤和刚性桥台之间强度改变逐渐发生不匀称沉降,会发生桥头跳车状态,是公路工程建筑中一个突出和重要的问题。3.减轻荷载和平衡荷载来防止桥头移位现桥梁设计人员考虑较多并行之有效的减轻荷载和平衡荷载方法来防止桥台移位,如增加桥长,降低桥台标高,即降低台后填土从而减小土压力;采用整板、筏板基础等,加大底面,分散受力,使基底压应力小于软基容许承压力;减轻台背荷载,台后用轻质材料或中间设空箱减少台后路基重量;平衡压重填土,即先在台前填土压重,然后再进行台背填土;支撑填土荷载,即在台后填土前设置桩及承台,使填土荷载大部分直接传到前置桩基上,使台本身受到的力大为减少,从而减少桥台位移;当河床不宽时,为减少桥长、节省造价,可采用桩基薄壁墩台,墩台顺桥向设支撑梁联系,整个桥梁结构构成框架结构体系,并借助两端台后的土压力来保持稳定。淤泥质软土层极为软弱,加上桥头填土较高,软土下卧层难以承受如此土压力,轻则使桥台出现沉陷和水平位移,重则发展为软土下卧层剪切滑动,使桥台和路堤一起坍塌。台后可采用增设小跨径的方法,适当增加桥长,减轻地基荷载及台后土压力,防止软土滑动,并制止桥台移动和沉陷的发展。另外,在软基中不可盲目压缩河道、减少桥长,这样将增加桥台滑动变形的可能性,造成更大的浪费;根据实际验算情况,适当增加桥长,另外增加抗滑系数,也是较好的选择。

桥头软基处理方法

查看全文

桥梁抗震设计管理论文

摘要:本文对世界主要的桥梁结构抗震设计规范基础部分的现状进行了概略的比较,着重介绍日本桥梁抗震设计规范中基础的设计方法,并指出了中国现行《公路工程抗震设计规范》基础部分中存在的一些不足。

关键词:桥梁基础抗震设计日本规范

一、引言

近十年来,世界相继发生了多次重大地震,1989年美国LomaPrieta地震(M7.0)、1994年美国Northridge地震(M6.7)、1995年日本阪神地震(M7.2)、1999年土耳其伊比米特地震(M7.4)、1999年台湾集集地震(M7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。

近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。

中国现行《公路工程抗震设计规范》(JTJ004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。

查看全文

现代桥梁设计技术创新论文

1我国桥梁设计现状

我国目前的桥梁建造以悬索桥、斜拉桥以及拱桥为主。拱桥作为我国独特的传统代表性桥梁,已有上百年的历史,其设计充满艺术性,在园林造景中显现得尤为突出。现代大型桥梁以悬索桥和斜拉桥为代表,20世纪80年代末,我国突破性地建成了南浦大桥,这标志着我国在现代桥梁的建造已达到世界级水平,也奠定了我国桥梁建设飞跃发展的基石。1999年江阴长江大桥建成并投入使用,这是我国第一、世界第四大桥,作为我国第一座超1000米的悬索桥,它标志着我国在桥梁建造水平上至了世界第六;2009年重庆朝天门大桥建成通车,成为“世界第一大拱桥”,主跨长达552米;2008年建成启用的杭州湾大桥,成为我国最长、世界第三长的跨海大桥,这些足以说明我国的桥梁建设水平已然达到了一定的高度。随着国力的增强,我国桥梁建筑频率以及桥梁规模都已达到国际顶尖水平,预示着我国正处于桥梁建设蒸蒸日上的高潮阶段。然而建设速度的加快也带来了一系列的问题,比如为了赶进度和赶工期或者为了追求国内第一甚至世界第一,在设计时考虑不周全,设计极限化而没有特色,由于设计周期短而仓促粗放地进行设计,致使有创意、有特点的设计少。总体而言,我国现阶段桥梁设计理论以及结构构造体系依然有待完善,另外在施工方面以及使用期限的安全性上都有值得改进的地方。

2桥梁设计的注意事项

桥梁设计最主要的是结构设计,而结构设计的关键就在于结构分析的到位与否以及结构方案制定得是否合理,其次是构件与连接的设计,为保证安全性,所有设计都必须采用规范要求的安全系数和可靠指标。在现代桥梁的设计中,不少设计者并没有为了增强结构的安全性,而从设计到施工再到使用整个过程上进行全面综合的考虑。

2.1重视结构耐久性

我国大约从20年前开始重视桥梁结构的耐久性,当时仅仅局限于从材料的角度,利用模拟实验、统计分析进行研究,虽然也取得了不少的成果,但要想与时俱进,在技术上实现飞跃,必须适当地改变思路,从结构与设计上来分析改善桥梁的耐久性。同时要考虑到施工人员的接受度、操作方式和实际完成情况,重视细节处理。在研究结构计算方法时不仅要考虑桥梁总体构造,还要将自然灾害、交通事故等偶然因素包括在内。

查看全文