纳米医疗技术范文10篇
时间:2024-05-24 08:16:26
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇纳米医疗技术范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
纳米材料应用于生物医学研究论文
摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。
关键词:纳米材料生物医学应用
1应用于生物医学中的纳米材料的主要类型及其特性
1.1纳米碳材料
纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。
纳米生物医学技术创新人才培养研究
在当今科学技术迅猛发展的时代,生物技术这一新兴产业显然已逐渐成为高新技术产业的领航者,随之产生的生物经济也将慢慢成为未来经济形态的主流。其中,生物技术在医学领域的渗透衍生了医学生物技术这一新领域,医学生物技术的发展与创新大力驱动着医学诊疗技术水平的提高。而医学诊疗领域的发展与进步关系着数亿万人民的健康,要不断提高医学诊治水平,适应人民群众日益增长的医疗需求,持续提高人民群众健康素质,是贯彻落实科学发展观,构建和谐社会的重要举措。因此,可以归结为医学生物技术可以从技术层面保障和提高人民生活质量,解决重要民生问题。21世纪以来,纳米技术基于其材料独特的尺寸效应和卓越的光电磁性能,得以迅猛发展并广泛应用在各产业研究领域中。在现阶段,纳米技术的主要发展方向之一,就是医学生物技术领域,随着交叉学科研究的渐渐兴起,纳米技术和医学生物技术也慢慢在跨学科的研究中不断进行交织和融合,慢慢衍生出一个发展非常迅速的交叉学科——纳米生物医学技术,并且,该技术已有效推动了医学生物产业的前进,并促进和支持医学生物技术行业成为国家经济,特别是高新技术产业中的核心要素[1-3]。尤其是近年来,纳米生物医学技术在人体医疗与健康方面涌现出不少应用可行性很强的技术成果,例如应用于临床上靶向缓释药物的开发,疾病相关分子诊断以及组织修复、器官再造等等方向[4]。但是,纳米生物医学技术在全世界都是一门新兴学科,因而在人才的培养和储备方面都面临着全新的挑战和困难,这一点在我国尤其突出,也就是纳米生物医学领域的专业人才严重短缺。针对这一技术的综合教学素质培养体系,也相当不完善。有鉴于此,笔者就医学院校本科培养阶段的纳米生物医学技术教育教学和专业技能培养方面,进行了一些初步的探索和研究,目的培养出具备前沿纳米生物技术知识储备,符合医学诊疗领域需要,且顺应“大众创业,万众创新”时展趋势的创新型人才。
1进行纳米生物医学技术教学的主要目标
纳米生物医学技术是一门非常典型的多领域交叉学科,生物医学、材料、化学和物理等学科的内容都包含在内,因此对人才培养的要求自然也非常高[5]。个人认为,应该将教学目标设计为培养学生具备相关领域多元化的知识结构,富有创新精神与思维模式,在纳米医学生物技术的某一或某几方面具有相当的专业实践技能与经验,能够将纳米生物医学的知识和技术应用于实际的科学研究与实际技术产业化之中,对纳米生物医学技术的发展方向和某一领域的当前产业情况主要发展趋势有所体悟,具有技术研究与项目管理实施的基本专业素养和技能。
2实施纳米生物医学技术教学的主要理念
纳米生物医学技术作为一门多领域交叉的新兴学科。作为一门非常强调实践与实用性的应用型技术学科,在纳米生物医学技术的教育教学过程中,我们必须坚持将理论教学与实践教学很好地结合在一起,通过把理论知识教学与课程实验教学、专业科研活动和产业企业课外实践活动整合成一个综合教学体系才能够真正培养学生的学习素质、自主发现、思考和解决实际问题的能力。因此,纳米生物医学技术的教学内容、方法、教学主体和教学对象等基本要素必需共同有机的地结合在一起,协同服务于学科教学目标,以合理的安排与布局,相互相同综合成一个有效的教育教学整体过程。我们应该充分注重激发与引导学生学习与创新的主动性与积极性,立足于提高学生的综合素质,不能像过去只是进行知识的单向传授,因此忽略了培养学生自主学习与思考、解决问题的能力,建立一种双向沟通、激励引导、教学相长的良性循环机制。在这种机制下,学生成为教学活动的主体,被动的接受知识变为主动的学习探索,教学过程也不再是枯燥、单调的知识传递,而是师生双方之间在智慧、思想与感情上的沟通分享。而且,教学模式应注意技巧设计,创造设计一个问题情境,通过好的提问与启发引导学生提出和发现问题,然后就该问题从不同的多个角度来解析与研究,并且进行持续的提问与思考,逐步分析挖掘该问题发生的根本性缘由,同时鼓励学生多角度多层次的寻找答案,通过答案的适度不固定性引导学生的思维发散开来,从而让学生主动学习和分析处理问题的习惯与素质得到良好的培养[6]。
3纳米生物医学技术教学课程体系的设计
独家原创:论纳米技术在中药现代化发展中的应用
近年来,由于人类对医疗保健要求的提高、化学药物的不良反应以及药源性疾病等原因,人们对药物的选择逐渐向“天然”靠拢,天然物质制成的药品倍受青睐。特别是对于老龄化社会来说,药效温和、不良反应小、重视整体调节人体机能的中药对慢性病、多脏器疾病的老年是最理想的药物。这些都为中药的发展提供了良好的契机,虽然通过几千年的实践,中药已形成自己独特而完整的药理体系,但由于中药传统给药途径与剂型比较落后,起效缓慢,难以标准化和规范化,特别是成分复杂,其成分分析与含量测定、药理学机制及稳定性研究有困难,还没有制定统一可行的质量标准,难以被国际市场所接受,限制了中药的发展。据统计,国际植物药的年市场销售额已达300亿美元,且以每年10%~20%的速度递增,但中国的中药仅占其中的小部分,而美国、日本、韩国等却占了大部分,且日本70%的原料从我国进口。我国出口份额占这么少,就是由于我国输出的是廉价的中草药原料;日本占的份额大,正是由于他们凭借高度发达的科学技术,按照国际规范化要求制成附加值高的中成药。严酷的现实表明,周边国家在进步,世界在进步,如果我国再不重视中药制药工程的建设和中药剂型的改革,我国的中药将在全球医药领域失去一席之地。因此,中药的现代化势在必行。
一、发展中药纳米技术的意义
百姓看病难,看病贵已经成为了阻碍我国社会发展的诟病。中医药不仅疗效好,而且价格便宜,在借鉴西方发达国家的制药技术的情况下,发展纳米高科技有助于宏扬我国几千年中药文化,让百姓摆脱看病资金紧缺的困境。因此,将纳米技术融入中医药,将使中医药的药效得到更好的发挥。2002年11月,国务院正式批转的我国第一部中药现代化发展的纲领性文件《中药现代化发展纲要》,正是为使我国中药继承发扬传统和特色,借鉴国际标准和规范,充分利用现代科学技术手段,实现中药现代化而制定的。在现代科技中,新崛起的纳米科技在生物医药领域已有很多应用和成果,将其引入到中药领域。应用于中药的纳米技术由于物质进入到纳米尺度表现出的诸多新特性,因此在广泛的领域里,纳米技术受到了高度重视和应用。中药领域也不例外,中药现代化的核心是中药的“安全、有效、可控、稳定”,中药指标必须定量化,生产工艺和质量控制必须标准化。因此,把纳米技术引入到中药制药领域,研究开发新的制药技术和剂型的改革等方面,必将会大大推动中药现代化的进程。
二、纳米技术对于病患的有效表现
利用纳米粉碎技术使中药矿物药和难溶性药物等的饮片加工成中药纳米粉,这些粉体中的颗粒直径减小到纳米量级,由于纳米微粒的许多效应如表面效应小尺寸效应等,使得加工后的纳米中药表现出许多极有价值的性能。
1.有效性、安全性。矿物药和难溶性药物的溶解和生物利用率与药物颗粒的比表面积正相关,粒径的减少,使药物颗粒的比表面积迅速增大(增大的幅度与普通药粉微粒相比可提高成千上万倍,甚至几十万上百万倍)。药物的活性和生物利用率大幅提高即大大提高了溶解性和疗效,从而减少用药量,节约中药资源。由于服药量大幅减少,也可大大减少某些药物重金属含量对人体造成的毒副作用。
制造业发展战略分析论文
一、转变制造业增长方式的紧迫性
目前,我国制造业已有较好基础,并已成为世界制造大国,工业增加值居世界第四位,约为美国的1/4、日本的1/2,与德国接近。产量居世界第—的有80多种产品。然而,我国制造的多是高消耗、低附加值产品,大量产品处于技术链和价值链的低端。在代表制造业发展方向和技术水平的装备制造业,我国的落后状况尤其明显,大多数装备生产企业没有核心技术和自主知识产权。同时,我国制造业劳动生产率水平偏低,许多部门的劳动生产率仅及美国、日本和德国的1/10,甚至低于马来西亚和印度尼西亚。这一差距,尤其明显地表现在资本密集型和知识密集型产业上。在此条件—卜,我国制造业不能继续在技术链低端延伸,不能依靠高消耗获得更多低附加值产品,必须用科学发展观指导制造业运行,转变制造业增长方式。
二、转变制造业增长方式必须发展现代制造技术
产品技术链,没有一个固化的定式,但总是由低端向高端发展。近年,它正伴随着现代制造技术的进步不断向高端延伸。目前,制造业技术链高端几乎被现代技术垄断,处于技术链高端的产品几乎都是由现代技术制造出来的。所以,要转变我国制造业增长方式,必须抓紧发展现代制造技术,通过现代技术促使制造业及其产品向技术链高端延伸,以便降低技术链低端产品的比重,相应提高技术链高端产品的比重。
在知识经济时代到来之际,微电子技术、光电子技术、生物技术、高分子化学工程技术、新型材料技术、原子能利用技术、航空航天技术和海洋开发工程技术等高新技术迅猛发展。以计算机广泛应用为基础的自动化技术和信息技术,与高新技术及传统制造方法结合起来,便产生了现代制造技术。
现代制造技术,保留和继承了传统制造技术的产品创新要求,如增加现有产品的功能,扩大现行产品的效用:增多现有产品的品种、款式和规格:缩小原产品的体积,减轻原产品的重量:简化产品结构,使产品零部件标准化、系列化、通用化:提高现有产品的功效,使之节能省耗等。但是,现代制造技术,在制造范畴的内涵与外延、制造工艺、制造系统和制造模式等方面,与传统制造技术均有重人差别。
纳米材料在化工生产中的应用
纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
纳米材料与催化剂分析论文
纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的价值。
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的可能给物理、化学、材料、生物、医药等学科的带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化不可忽视的重要研究课题,很可能给催化在上的应用带来革命性的变革。
纳米材料结构分析论文
纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
制造业技术链高端延伸论文
编者按:本文主要从转变制造业增长方式的紧迫性;转变制造业增长方式必须发展现代制造技术;发展现代制造技术的重点方向进行论述。其中,主要包括:我国制造业已有较好基础,并已成为世界制造大国、产品技术链,没有一个固化的定式,但总是由低端向高端发展、现代制造技术,保留和继承了传统制造技术的产品创新要求、以纳米技术为基础的微型系统制造技术、以电子束和离子束等加工为特色的超精密加工技术、以节约资源和保护环境为前提的省耗绿色制造技术、产品设计上,尽量提高可拆卸性、可回收性和可再制造性等,具体请详见。
[摘要]目前,我国制造的多是高消耗、低附加值产品,处于技术链和价值链的低端;为此,必须用科学发展观指导制造业运行,转变制造业增长方式,着重发展处于技术链高端的微型系统制造技术、超精密加工技术和省耗绿色制造技术等现代制造技术,促使制造业向技术链高端延伸。
[关键词]制造业;增长方式;发展战略;思路
一、转变制造业增长方式的紧迫性
目前,我国制造业已有较好基础,并已成为世界制造大国,工业增加值居世界第四位,约为美国的1/4、日本的1/2,与德国接近。产量居世界第—的有80多种产品。然而,我国制造的多是高消耗、低附加值产品,大量产品处于技术链和价值链的低端。在代表制造业发展方向和技术水平的装备制造业,我国的落后状况尤其明显,大多数装备生产企业没有核心技术和自主知识产权。同时,我国制造业劳动生产率水平偏低,许多部门的劳动生产率仅及美国、日本和德国的1/10,甚至低于马来西亚和印度尼西亚。这一差距,尤其明显地表现在资本密集型和知识密集型产业上。在此条件—卜,我国制造业不能继续在技术链低端延伸,不能依靠高消耗获得更多低附加值产品,必须用科学发展观指导制造业运行,转变制造业增长方式。
二、转变制造业增长方式必须发展现代制造技术
纳米材料在化工生产中的应用论文
纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
纳米科技发展特点分析论文
科学界普遍认为,纳米技术是21世纪经济增长的一台主要的发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌,纳米技术将给医学、制造业、材料和信息通信等行业带来革命性的变革。因此,近几年来,纳米科技受到了世界各国尤其是发达国家的极大青睐,并引发了越来越激烈的竞争。
1、各国竞相出台纳米科技发展战略和计划
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。