几何统计分布管理论文
时间:2022-07-10 12:04:00
导语:几何统计分布管理论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要:本文研究如何用次序计量来刻划几何分布,证明了如下两个命题:(1)若存在使同及独立,则服从几何分布。(2)若存在使同{}及独立,则服从几何分布。
关键字:几何分布,统计特征,次序统计量。
TwoStatisticalCharacterizationofGeometricDistributions
QuzhouUniversityofBroadcastTelevisioninZhejiangProvinceLuoLi
Abstract:Wemakeadetailedstudyofusingtheorderstatisticstodepictthegeometricdistribution.Thefollowingtwoconclusionshavebeendemonstratedinthepresentpaper.First,ifthereexistssuchthatisindependentoftheeventand,thenisgeometric.Second,ifthereexistsasuchthatisindependentoftheevent{}and,thenisgeometric.
Keywords:Thegeometricdistribution,statisticscharacteristic,ordercountamounts
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
引理6:设对同及独立,则对有。
注:文献[2]中对k的限制为,事实上从证明过程上看可以放宽为。
引理7:,由二元方程:
可得如下结论:(1)当时,对中有根;当时,对中有根;(2)当,;当,
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
省略。。。。。。。。。。。。。。
当k为奇数时,
令
即。所以,不论k是否为奇数或偶数,都有,即对单调下降。
此与矛盾,进而假设不成立。
所以对(或)有,则一定存在s0有.进而只有在时,才有及对一切的(正整数).进而,.即X1服从几何分布。
参考文献:
[1]Arnold,B.C.,Twocharacterizationsofgeometricdistribution,J.Appl.Prob.,17(1980),570-573.
[2]毛用才,关于几何分布特征的注记,西北电讯工程学院学报,4(1986),16-25.
[3]Ferruson,T.S.,Oncharacterizingdistributionbypropertiesoforderstatistic,Sankhya,A,29(1967),265-278.
- 上一篇:语文影视教育管理论文
- 下一篇:地方资源建设综合管理论文