逆变电路数字信号论文
时间:2022-04-06 04:25:31
导语:逆变电路数字信号论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
1有限双极性控制
全桥逆变器采用的是绝缘栅双极晶体管,控制方式为有限双极性控制[4],如图2所示。全桥逆变器的工作原理为:接通任一桥臂的两个绝缘栅双极晶体管,如IGBT1和IGBT3,接通时间ton,其值为DTs/2,(D为占空比,Ts为交替接通周期)。另一桥臂的晶体管IGBT2和IGBT4依次接通Ts/2。除IGBT1与IGBT4同时接通或IGBT2与IGBT3同时接通外,高频变压器的一次电压和输出电压均为零。受负载电感的影响,负载处在一个交替接通周期内可以形成稳定的恒定电流。脉宽调制脉冲的宽度和负载的性质共同决定了负载电流的大小。在晶体管IGBT2和IGBT4的脉宽调制波形设置一个死区时间,以防所有开关管同时接通而产生短路。输出电流的调节通过IGBT1和IGBT3驱动信号的脉宽调节。
2数字脉宽调制
作为逆变电路的核心,输入信号经脉宽调制器与给定值比较后,转变为具有一定占空比的脉冲信号输出并驱动电路,进而对整个逆变电源的输出进行调整和控制。数字信号处理器中自带有脉宽调制模块,该模块中具有8个I/O引脚,组成编号为PWM1H/PWM1L、PWM2H/PWM2L、PWM3H/PWM3L、PWM4H/PWM4L的4个高/低端引脚对,并分别由4个占空比发生器控制。I/O引脚对低端与高端的状态在负载互补时恰好相反。脉宽调制模块具有4种工作模式,能够实现有限双极性控制。数字脉宽调制流程如图3所示,其工作模式由脉宽调制时基控制寄存器设定。引脚对PWM1H/PWM1L设置为递增/递减模式时,可以控制全桥逆变器中的晶体管IGBT2和IGBT4;引脚对PWM2H/PWM2L设置为双更新模式时,可以控制全桥逆变器中的晶体管IGBT1和IGBT3。无论何种工作模式,脉宽调制的定时周期均通过控制寄存器实现。IGBT2和IGBT4的占空比由占空比寄存器1设定,并在有限双极性控制模式下设置为1;IGBT1和IGBT3的占空比由占空比寄存器2设定,并在有限双极性控制模式下不断更新,其更新数据由PI控制模块根据反馈电流或电压计算得到。脉宽调制时基控制寄存器的值在实时控制过程中不断增加,并不断与占空比寄存器的值进行比较,直至两者相等时输出脉宽调制信号,并通过设置置位比较控制寄存器将输出信号分为低有效和高有效。通过设置脉宽调制模块自带死区时间发生器的控制位,可以为PWM1H/PWM1L的死区时间设置插入位置和大小。2.3PI调节对于对象为惯性环节或滞后环节的连续控制系统,理想的控制方法是比例+积分(PI)控制,以保证系统稳定后不会出现稳态误差。由于高频逆变电源的对象为二阶惯性环节,因此适于采用增量式PI控制[5]。在由数字信号处理器控制的逆变电路中,采用软件得到的高频方波信号具有精准的占空比和频率,如图4所示。图中Ig和If分别为基准电流和实测电流,e为两者的差值,即电流偏差,Ig为数字信号处理器产生的方波电流。PI调节的执行机构和控制对象分别为脉宽调制模块和全桥逆变电路。即将电流偏差e输入PI控制器,由脉宽调制模块输出脉冲信号,以调节逆变电路的交替接通,进而控制电流。
3实验研究
该点焊实验以自制的高频逆变电路为电源,实际负载采用电阻箱,逆变电路采用有限双极性控制功率,电压波形如图5所示。三段焊电流具有缓慢升降的作用,可用于复杂动态焊接过程,提高焊接工艺水平。三段焊电流的实现通过三个不同参数的设置实现,如图6所示。电流波形的电流和时间分别设置为:1.0kA、6.5ms,1.5kA、7.0ms,2.0kA、8.0ms。迹示教的轨迹存储功能,能够完成不规则焊缝的多层多道焊接。(3)进行了盾体焊接及切割试验,获取了相应的试验数据,验证了所研发焊接/切割机器人应用于盾体焊缝自动焊接及切割的可行性。
作者:刘晓芳赵红梅单位:河南城建学院
- 上一篇:甚高频全向信标数字信号论文
- 下一篇:基于GPU的数字信号论文