人工智能与数据挖掘技术研究
时间:2022-11-23 11:25:18
导语:人工智能与数据挖掘技术研究一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要:人工智能技术是智能决策支持系统的重要组成部分,数据挖掘在智能决策支持系统的影响空间中,主要负责智能决策支持的处理。因此,数据挖掘在整个智能决策支持系统中有着举足轻重的位置。数据挖掘使用的技术和方法广泛来自人工智能,本文分别介绍了人工智能技术和数据挖掘技术的定义,研究背景和研究目的,以及数据挖掘与人工智能的联系,并结合国内外在该领域的研究成果指出了其广阔的发展前景。
关键词:人工智能;数据挖掘;发展前景
当今社会已经进入了人工智能时代,人工智能的应用,大大改善了我们的生活。大数据时代已经来临,不论是从数据的使用,挖掘,处理等方面,都为人工智能的应用起到了基础和保障。
1人工智能
1.1人工智能的定义。人工智能(ArtificialIntelligence),简称AI。属于计算机学科下的分支,顾名思义,它是一门专门研究类人化的智能机器学科,即利用现阶段科学的研究方法和技术,研制出具有模仿、延伸和扩展人类智能的机器或智能系统,从而实现利用机器模仿人类智能的一切行为。1.2人工智能的研究背景。在1956年的达特矛斯会议上,“人工智能”这一术语正式由麦卡锡提议并采用了,随后人工智能的研究取得了许多引人注目的成就。在这之后,科研人员进行了许多的研究和开发,人工智能这个话题也取得了飞速的发展。人工智能是一门极具挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学理念。人工智能的研究包涵广泛的科学知识,以及其他领域的知识,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标是使机器能够做一些通常需要人工智能完成复杂工作的机器。1.3人工智能的研发历程。早期研究领域:人工智能专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动编程,机器人,游戏,人工神经网络等,现在涉及以下研究领域:数据挖掘,智能决策系统,知识工程,分布式人工智能等。数据挖掘的出现使得人工智能的研究在应用领域得到广泛的发展。以下简要介绍其中的几个重要部分:(1)专家系统。所谓专家系统就是控制计算的智能化程序系统,通过研发人员总结归纳了专业学科知识和日常经验,能够知道计算机完成某个领域内的专业性活动或者解决某些专业级别的问题。人工智能技术可以合理利用已知的经验体系在复杂环境中,解决和处理复杂问题。(2)机器系统。机器系统简单说就是机器人通过人造神经系统,借助于网络或者存储系统汲取系统的知识进行开发研究。(3)感知仿生。感知仿生系统通过模拟人类的感官,感知生物学特征,通过人工智能机器的感部件对外界外部环境进行感知,识别,判断,分析的能力。能够更好的适应环境,做出判断。(4)数据重组和发掘。是指通过人工智能系统,结合当前先进的理念,对大数据的总结归纳,识别存储,调取等应用。通过数据的加工处理,能够主动做出判断和分析。(5)人工智能模式。分布式人工智能是模式之一,该系统利用系统有效的规避和克服系统资源在某段时间内的局限性,并能有效地改善因资源造成的时间和空间不均衡问题。它具备,模式自动转换,并行处理,开放启发方式,冗余且容错纠错的能力。
2数据挖掘
2.1数据挖掘的定义。数据挖掘(DataMining,DM)是揭示数据中存在的模式和数据关系的学科,强调处理大型可观察数据库。数据挖掘的出现使得人工智能的研究在应用领域得到了广泛的发展。这里包括数据挖掘和智能信息提取过程,前者从大量复杂的现实世界数据中挖掘出未知和有价值的模式或规则,后者是知识的比较,选择和总结出来的原则和规则,形成一个智能系统。2.2数据挖掘的研究现状。当前数据挖掘应用主要集中在电信、零售、农业、网络日志、银行、电力、生物、天体、化工、医药等方面。看似广泛,实际应用还远没有普及。而据Gartner的报告也指出,数据挖掘会成为未来10年内重要的技术之一。而数据挖掘,也已经开始成为一门独立的专业学科。2.3数据挖掘的研究发展。具体发展趋势和应用方向主要有:性能方面:数据挖掘设计的数据量会更大,处理的效率会更高,结果也会更精确。工具方面:挖掘工具越来越强大,算法收敛越来越多,预测算法将吸收新颖性算法(支持向量机(SVM),粗糙集,云模型,遗传算法等),并实现自动化的实现算法,选择和自动调谐参数。应用:数据挖掘的应用除了应用于大型专门问题外,还将走向嵌入式,更加智能化。例如进一步研究知识发现方法,对贝叶斯定理和Boosting方法的研究和改进,以及对商业工具软件不断的生成和改进,着重建立整体系统来解决问题,如Weka等软件。在先进理论的指导下,按照国内形态发展,至少需要20年的时间,才能改进数据挖掘的发展。
3数据挖掘与人工智能技术的联系
数据挖掘属于人工智能中独立系统。它于人工智能的存在关系属于,并存联系,且独立运行,互不从属。此设计体系一方面可以有效促进人工智能提升学习能力,增进分析能力,另一方面还对分析,统计,OLSP,以及决策支持系统模块等起到推动作用。在收挖掘应用领域,处理可以对WEB挖掘,还能够有效进行文本,数据库,知识库,不同领域不同学科的信息进行序列矩阵模式挖掘。基于数据本身的分类,辨识,关联规则,聚类算法更加博大精深。因此,独立于人工智能的数据挖掘,更加便于科研团体或者领域对数据的使用和分析。数据挖掘是人工智能领域的一部分。首先,高智能是数据挖掘和人工智能的最终目标,正是由于这个目标,人工智能和数据挖掘有很多关联。其次,数据挖掘和人工智能是各种技术的整合。数据挖掘和人工智能是许多学科的跨学科学科。最后,数据挖掘的出现逐渐发展壮大,加强了人工智能,因此可以说,它们两者是不可分割的。
4人工智能和数据挖掘技术的发展前景
在当前环境下,人工智能和数据挖掘技术具有以下发展前景:(1)在大数据互联网中的应用。将人工智能的技术应用于互联网中将会使网络技术带上智能的特性,可以为人们的生活提供智能化的帮助,给人们的生活带来便利。还可以提高网络运行效率、增加网络安全性等。(2)智能化服务的研究。人工智能和数据挖掘都很注重对智能化服务的研究,例如很多智能机器人便应运而生,它们已经能胜任许多简单的工作,可以为人们提供人性化的服务。高度的智能化是数据挖掘和人工智能研究最终追求的目标,也是二者最终合而为一的标志。(3)使知识产生经济化。在现阶段的知识经济时代,人工智能和数据挖掘势必受到经济的影响,这决定了人工智能和数据挖掘将具有经济特征。人工智能和数据挖掘技术作为无形资产可以直接带来经济效益,通过交流,教育,生产和创新的无形资产将成为知识经济时代的主要资本。可以预期未来的人工智能和数据挖掘技术将更加经济实用。(4)交叉学科的技术融合。各行各业的理论和方法都已经开始融入了人工智能和数据挖掘之中。未来的人工智能和数据挖掘技术必将是一个融合众多领的复合学科。当今,我们已经在逐渐使用人工智能与数据挖掘技术,去攻克更多难题,解决更多问题,造福人类,改善生活,近在眼前。
作者:喻正夫 单位:汉江师范学院
参考文献:
[1]万璞,王丽莎.数据挖掘与人工智能技术研究[J].无线互联科技,2016(10):113-114.
[2]王翔.试论如何利用大数据挖掘技术推动人工智能继续发展[J/OL].科技创新报,2017,14(01).
[3]秦益文.微博数据挖掘中人工智能推理引擎的应用[J].中小企业管理与科技(中旬刊),2017(02).
[4]蒲东齐.数据挖掘在人工智能上的应用[J].信息与电脑(理论版),2016(19).
[5]李丹丹.数据挖掘技术及其发展趋势[J].电脑应用技术,2007(02):38-40.
[6]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2004(8):5,21,312.
[7]钟智,尹云飞.数据挖掘与人工智能技术[J].河南科技大学学报(自然科学版),2004(3):44-47.
- 上一篇:数据挖掘在物流中的应用
- 下一篇:小波分析在数据挖掘的运用