消防灭火救援中数据挖掘的应用

时间:2022-02-25 03:29:12

导语:消防灭火救援中数据挖掘的应用一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

消防灭火救援中数据挖掘的应用

摘要:城市化人口的集中和城市化建设的加快加剧了城市消防工作的难度,为了有效管理城市消防灭火系统,就要从消防供水系统下手,这里就要运用到数据挖掘技术对数据进行有效分析。那么消防灭火救援数据挖掘应用是怎样的,本文会逐一进行探讨与分析。

关键词:消防灭火救援;数据挖掘技术;应用

随着城市化建设步伐的加快,城市中人口的集中,产生了许多安全隐患,尤其是火灾隐患,所以消防灭火工作变成了现今城市建设中的重要工作。消防灭火救援中最重要的是对水的需求,做好城市消防灭火工作的基础是有效设置好城市给水系统的合理设置。数据挖掘就是将大量的随机化数据编程课被理解的智慧的过程,使用数据挖掘等相关知识可以对城市消防及水系统中的相关信息进行有效处理。本文通过对数据挖掘技术进行分析,从而得出其在消防灭火救援工作中的作用,从而分析消防灭火救援中数据挖掘的应用。

一、对数据挖掘技术的认识

数据挖掘是20世纪80年代产生的一种用来分析信息数据的一种专业技术,常常用来决策或者解决商业方面的问题。数据挖掘的操作方法是对一些大量的数据进行提纯,运用一定的手段对数据进行处理,将数据中的有效信息提取出来,实现数据和信息的有效转化。数据挖掘就是将大量的随机化数据编程课被理解的智慧的过程。数据挖掘的过程主要可以分为以下几步:首先是数据的准备,将被挖掘的数据进行详细罗列,其次是数据挖掘,也就是从数据样本中提取有效信息,最后是对挖掘结果的解释。数据挖掘是一项十分综合性的技术,他是数理统计、数据库、模糊数学等相关技术的综合体,是一项多种数学学科交叉的综合性学科,数据挖掘的价值主要表现在以下几个方面:可视化、估值与预测、分类与聚类、关联分析以及异类分析几种。

二、消防灭火救援中数据挖掘技术的作用

数据挖掘作为综合性的统计技术,在各行业的作用不容小视,其中运用于消防灭火救援过程中也是十分有效的。而数据挖掘在消防灭火救援中被应用的优势也就是其发挥的作用主要表现在以下几点:首先是使用数据挖掘等相关知识可以对城市消防及水系统中的相关信息进行有效处理。其处理步骤为:(1)根据消防灭火救援中的供水需求进行分析,在现有的数据库中寻找相关数据,并将数据进行整合。(2)运用数据仓库分析技术对数据进行初步处理,粗略计算出积水系统的供水量。(3)采用聚类分析方法对数据进行分类,有效规划好城市消防给水系统的大框架。其次,数据挖掘技术中所涉及的数据仓库技术能够有效解决当前消防数据库中信息利用率低的缺点,能够有效整合多个数据库中的数据建立专门的数据库,并能够对数据进行分析,对现有的消防灭火救援工作提供便利。此外,我国现有的地面水源的有效利用率还不是很高,江河湖海中的水大部分都是火灾的时候临时抽取,难免有些处理不当,数据挖掘能够有效整理消防供水系统,将地面水源规划到消防供水的库存中,提高地面水源利用率,也有效降低管理成本。最后,数据挖掘中的聚类分析方法能够有效对城市中所发生的活在源头和隐患进行整理和排查,有效防止火灾的发生,也能够进一步优化城市消防系统,扩大消防供水系统的覆盖点,完善城市消防灭火系统,而且数据挖掘还能够对不同的建筑分步进行细化分类,对不同程度的火灾所需要的水量进行预测,从而能够实现对城市消火栓的分布情况进行科学性处理。

三、消防灭火救援中数据挖掘的应用

消防灭火救援中最重要的是对水的需求,做好城市消防灭火工作的基础是有效设置好城市给水系统的合理设置。所以消防灭火救援中数据挖掘的应用要从消防的供水需求出发,对现有的数据库进行分析和整合,确定需水状况,进一步对事实表和维度进行划分,建立新的数据仓库,为消防给水系统的运行提供决策方面的支持。步骤如下:

(一)建立数据模型

从上文分析来看,建立新的数据库要具有以下功能:火灾风险评估功能、消防给水功能以及历史或再分析功能。而要做到这三点,就要对数据仓库进行分类,建立三层分类模型,分别是概念模型、逻辑模型和物理模型三类。概念模型的设计主要以信息包图为基础进行,首先要确定信息包图的指标、维度和类别三大方面,然后再对实体对象进行分析,从而完成信息包图;逻辑模型的基础是星型图,它的主要方面是指标实体、维度实体和详细类别实体三种,主要反映概念模型中涉及的实体间的关系;物理模型的基础是数据库表,主要是将指标的实体转化成的数据编成表,主要内容的是星型图中各种中心和边角上的数据信息,能够有效形成火灾风险防控的星星模式结构。

(二)联机网络进一步分析

这一步是运用网络工具进行联机分析,主要的步骤为:首先定义控制流任务,运用合适的多媒体工具进行数据的提取和转换,而且还要确保数据的时效性;其次是建立对微数据,将数据仓库中的事实表和维表从而为表转换为多维化数据。

(三)聚类方法分析火灾风险

聚类分析是数据挖掘技术中一种重要的数据处理方法,主要原理是将指标量变为数据量,主要步骤是:建立指标体系——确定指标因子的权重——量化指标——实现聚类分析。通过聚类分析可以对不同地区的火灾等级进行分类,评估不同地区的火灾隐患严重度,从而进行供水系统的有效安排,保障该区域的消防灭火工作的进行,也能够对火灾进行有效的防控。结语综上所述,数据挖掘技术是时展的成果,是对数据进行统计的重要技术,在各行业的应用都很广泛。本文通过分析消防灭火救援中数据挖掘的应用,对数据挖掘技术有了初步了解。虽然我国消防工作中设计了大量数据,对于数据处理的技术还很生疏使得数据的利用率比较低,本文将消防工作和数据挖掘技术联系起来,能够对消防工作中的数据处理起到一些参考作用,相信随着时间发展,数据挖掘终将运用于消防领域中,为我国未来的建设贡献一份力量。

作者:王鹏飞 单位:山西省公安消防总队太原市公安消防支队

参考文献

[1]楼巍.面向大数据的高维数据挖掘技术研究[D].上海大学,2013.

[2]谢道文.基于数据挖掘的火灾分析模型及应用研究[D].中南大学,2014.

[3]袁力哲,焦爱红.浅谈数据挖掘技术在消防系统中的应用[J].消防科学与技术,2004(06):564-566.

[4]张大可.数据挖掘技术在火灾事故分析中的应用研究[D].首都经济贸易大学,2010.