统计专业数据分析人才培养探索

时间:2022-10-11 02:46:06

导语:统计专业数据分析人才培养探索一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

统计专业数据分析人才培养探索

一、以“复合型”人才培养为目标创新教学培养模式

应用统计专业学位的设立是为了适应现代统计事业发展对应用统计专门人才的需要而设置的,它的培养目标主要是让学生掌握扎实的理论基础和系统的专业知识和技能,具备数据采集、整理、分析和开发的能力,能够从事统计调查咨询、数据分析等“应用型”统计专门人才[5]110-111。然而,在大数据环境下实现的数据分析已不再局限于某一类特殊的行业统计分析需要,各行各业的运作发展都越来越依赖于大数据环境的存储、计算、统计分析与决策。对于多样化的大数据集,其所涉及的内容和知识结构必然是不同学科的交叉应用。大数据时代的数据分析专业人才的培养目标并不仅仅是传统的数据收集、整理与分析,而是需要掌握能适应大数据特点的新的研究方法和独立分析的能力,能很好地融会贯通其他专业的知识内涵,成为真正意义的专业大数据分析人才。然而传统的统计学人才培养目标和教学模式并不符合社会对大数据分析专业能力的要求。参考和借鉴文献[6-7]8-9,226提出来的一些建议,笔者探索从以下几个方面对人才培养目标和教学培养模式进行改革:(一)走出校园,深入社会,挖掘并归纳出社会用人单位对数据分析专业职位技能和能力素质要求,进而制定符合社会需求的人才培养目标,以市场需求为导向更好地指导教学实践活动。为了更好地为用人单位输送符合大数据时代需求的专业数据分析人才,尝试对高年级学生的培养方案设计中考虑以岗位需求为标准灵活调整和制定相应的培养目标和内容。(二)参考国外本科生专业人才培养的先进理念,引入“协作式”培养模式,大力支持大型企业与高校合作或高校与高校合作培养复合型和开发型人才。各个高校、企业可以发挥各自专业特长来实现合作,高校的不同专业之间也应该加强沟通和协作,例如在制定应用统计专业数据分析人才培养方案及实施过程中,可以以统计学科所在的学院为主导,让计算机学科、经济、金融及管理学科等相关学院协作参与完成[8-9]60-64。(三)总结教学过程存在的不足,探索新的知识学习和能力培养的创新模式。目前的教学活动主要以老师独立授课,学生被动接受知识为主的方式,培养过程计划性强,缺乏弹性,培养的评价也过于单一。在本科生培养中可以引入课程学习、导师指导和科学研究三个阶段,考虑采用导师指导与集体培养相结合的方式,一门专业课程的讲授不再局限于单个老师完成,在培养方案中考虑主题分组方式,鼓励授课教师根据自己的专业特点和知识背景共同参与一门课程的教学活动。多名教师协同工作的模式可以取长补短,在大数据分析的实际案例设计及课程内容上都更加贴近实际需求,产生更好的教学效果[6]8-9。

二、基于大数据分析的特点科学构建课程体系

大数据背景下,人们可以通过互联网、数据库以及各种通信工具获得海量数据,人们日常生活、学习和工作的各类事物都可以实现信息化,世界几乎是由各种信息和数据所构成的。大数据的特点可以归结为四个V,数量大(Volume)、类型繁多(Variety)、价值密度低(Value)、速度快时效高(Velocity)[6]8-9。大数据的真正意义不在于能提供庞大的数据量,而是对海量的数据进行专业的处理和分析,并从中获取用户关注的信息。结合当前互联网应用中大数据本身的特点,从大数据中挖掘出重要知识并对之深度学习和分析的工具和方法也应与时俱进地发生改变,传统的统计方法和统计分析工具已无法满足大数据分析的需要。然而,在大多数高等院校中,统计学专业人才培养的课程体系并没有考虑社会的实际应用需求,仍然停留在以传统的统计模型框架为主导的课程体系设置,本科生教育的主要专业课程包括:数学分析、高等概率论与数理统计、应用随机过程、回归分析和多元统计分析等[10]248-249,这些课程内容和知识结构还不足以满足大数据时代对数据分析专业人才知识结构的要求,课程体系设置中缺少能有效整合的数据分析能力培养模块[11]66-68。因此,有必要针对各类院校师生各自的专业特点和学科基础,分层次、分阶段地展开课程体系改革。(一)参考国内外先进高校大数据分析专业的课程设置,结合本校的师资和专业结构特点采取灵活的策略制定课程计划,在实施学分制改革的高校中各类学生可以在学业导师指导下实施符合学生自身特点的课程学习方案。(二)以大数据分析人才需求驱动的课程体系改革要考虑市场的行业需求变化、大数据应用中跨学科的特点。素质好的数据分析人员不仅仅要具备专业的数据分析能力,还应该对具体数据中涉及的学科知识有较好的储备,能将不同行业的专业知识与数据分析紧密关联起来,实现大数据分析的效用最大化。此外,在充分借鉴国内外大学成功经验的基础上,课程设置应该与学生的学术倾向和基础能力紧密结合,注重基础课程教育的同时强调文理渗透,同时要兼顾学生的兴趣与学习的联系,在课程体系的设置中需要增设一些多领域、跨学科的选修课程,如经济学、金融学、保险学、管理学和会计学等。因此,校内跨学科或高校与高校之间联合培养是实现跨学科课程建设的有效方法之一。(三)科学构建课程体系的主要思路还包括根据大数据时代需求,对专业必修和专业选修课程在课程时间、顺序及内容等方面进行改革。专业必修课程重点内容为统计学和计算机科学的交叉部分,在讲授统计基础理论(如多元统计、决策树、时间序列等)课程基础上设置大数据案例分析课程,在案例分析过程中让学生实际操作企业当前应用的大数据计算平台[6]8-9,从而增强学生大规模分布式计算技能。为提高学生的实际动手和二次开发能力,专业选修课程需更多地开设与数据挖掘及面向数据的编程语言相关的课程,如数据挖掘算法、C++、Java和Python等课程,强化学生的数据挖掘和分析能力。

三、基于协同创新的理念开展实践教学改革

近几年,随着应用型、创新型人才培养目标的提出,学校越来越重视和加强对各类专业人才实践教学能力的培养,以“数据分析”为方向的专业人才需要运用统计分析软件对数据进行分析和决策,其实践教学的重要性更是不言而喻。然而,在大数据被广泛应用的时代背景下,高等院校中的实践教学仍然是培养高层次“大数据分析”人才的薄弱环节,实践教学教材及内容不规范、教学方法单一、软硬件的更新以及师资储备等方面都存在着一些问题[12]96-97。例如以模型驱动为主的实践教学模式已不适应大数据时代的要求,大数据时代数据是海量且复杂的,用简单的SPSS、Eviews为主的软件教学已无法处理大数据[5]110-111。因此,学习其他知名高校构建的协同创新的理念,结合财经类院校的统计学科及人才培养的特点,开展实践教学改革[13]248-249。对“数据分析”专业人才实践教学改革,笔者的建议如下:(一)根据协同创新理念,解决实践教学环节存在的实验教材(教学内容)缺乏实用性的问题,一方面可以参考企业对数据分析师、调查分析师资格认证相关培训教材,开发实用性强的《数据分析》实践教材,另一方面学校可以和企业或其他高校定期举办交流座谈会,面向企业需求甄选实践教学内容。(二)高素质的师资队伍对人才的培养无疑起着至关重要的作用,在提高指导教师理论和实践能力方面,借鉴协同创新联合培养的模式可以有效充分地利用企业、学校的各方面师资资源。例如北京大学、中国科学院、中国人民大学、中央财经大学、首都经济贸易大学5所高校已经与政府部门和产业界签署了联合培养大数据分析应用人才的合作协议[14]。广东财经大学也可以参照类似联合培养的做法,和广东其他高校、政府和企业合作。一方面企业或政府可以利用自身的资源为高校提供人才培养实习基地,并且引荐相关的技术人员聘为校外实习导师,指导学生在实习实践中建立以问题为导向,以项目为牵引的运作机制,让学生能够理论联系实际,切身体会数据分析的商业操作体系。另一方面,由于高校的专业教师缺乏社会实践的机会和经验,高校应该制定政策鼓励并推荐相关专业教师走出学校、走进企业,密切与企业合作交流,从而更进一步地提高教师对复合型专业学位人才培养的能力[15]29-32。(三)为了激发学生的学习热情,减少对实践操作的畏难情绪,实验课程的教学方法也需要探索创新性实践教育模式。教学过程可以考虑灵活的制定团队教学计划、案例实战分析、模拟实训等多样化的方式,减少单一的课堂内容讲授,在理论和实践教学环节中积极调动学生的主观能动性,提供更真实的企业大数据应用环境,并以学生为主完成实际案例分析。此外,基于不同的授课对象的特点,老师在教学过程中也要适当考虑学生的兴趣和需求,随时调整实验教学策略[9]。

大数据时代,人类的工作和生活都与大数据息息相关,各类行业的发展也和大数据中的海量信息密切相关,数据及其分析将成为决策唯一的依据。因此,各行各业都将需要拥有大数据分析能力的统计学专业人才。各类高等院校作为人才培养的重要载体,更是承载了培养能适应大数据环境下数据分析专业人才的重要使命。文章从完善人才培养的目标出发,总结和分析了传统的统计学及数据分析人才培养在大数据环境下存在的问题,并基于大数据的特点提出了课程体系和内容的改革思考,并在此基础上提出了面向大数据分析的课程实验教学方法,探讨如何提高本科生理论与实践结合的综合能力,为大数据时代下数据分析专业人才培养改革提供新的思路和参考。

作者:温雅敏 龚征 单位:广东财经大学 华南师范大学