浅议小学生如何正确掌握数学概念的探讨
时间:2022-03-26 06:18:00
导语:浅议小学生如何正确掌握数学概念的探讨一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
现在很多小学生对学习数学的积极性不高,缺乏学习兴趣,认为数学特别难学。我们只要认真分析,就不难发现,主要是学生对一些数学概念没有搞清楚。如:12的最大约数与最小倍数是相等的。学生却判断是错误的,本题涉及“因数”、一个“自然数”的因数是“有限的”,最小的是1,最大的是它本身。“倍数”、一个自然数的倍数是“无限的”,最小的是它本身,最大的没有。还有“相等”。学生出现错误,说明学生对数学概念没有理解掌握好。数学概念是“双基”(即基础知识和基本技能)教学的核心内容;是基础知识的起点;是逻辑推理的依据;是正确、合理、迅速运算的保证。学生正确、清晰、完整地掌握数学概念,是掌握数学知识的基础。如果学生对概念不明确,也会影响学生的学习兴趣和学习效果。如果不懂什么是“分数”和“分数单位”,就很难理解分数四则运算法则的算理,就会直接影响分数四则计算能力的提高。正确、迅速、合理、灵活的计算能力只有在概念清楚的基础上,掌握计算法则,经过适当练习才能形成。学生概念清楚了,才能进行分析推理;逻辑思维能力和解决问题的能力才能不断提高。因此,在教学中如何使学生形成概念,正确地掌握和运用概念是极为重要的。数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不足,抽象思维能力差,理解起来有一定的困难。因此教师在有关概念的教学过程中,一定要从小学生年龄实际出发,这样才会收到好的教学效果。
一、教学中让学生理解数学概念
1.直观形象地引入概念
数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的局限,其思维处在具体形象思维为主的阶段。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,一定要做到细心、耐心,尽量从学生日常生活中所熟悉的事物开始引入。这样,学生学起来就有兴趣,思考的积极性就会高。如在教平均数应用题时,我利用铅笔做教具,重温“平均分”的概念。我用9个同样大的小木块摆出三堆,第一堆1块,第二堆2块,第三堆6块,问:“每堆一样多吗?哪堆多?哪堆少?”学生都能正确回答。这时,我又把这三堆木块混到一起,重新平均分三份,每份都是3块,告诉学生“3”这个新得到的数,是这三堆木块的“平均数”。我再演示一遍,要求学生仔细看,用心想:“平均数”是怎样得到的。学生看我把原来的三堆合并起来,变成一堆,再把这堆木块分做3份,每堆正好3块。这个演示过程,既揭示了“平均数”的概念,又有意识地渗透“总数量÷总份数=平均数”的计算方法。然后,又把木块按原来的样子1块,2块、6块地摆好,让学生观察,平均数“3”与原来的数比较大小。学生说,平均数3比原来大的数小,比原来小的数大,这样,学生就形象地理解了“求平均数”这一概念的本质特征。
2.运用旧知识引出新概念
数学中的有些概念,往往难以直观表述。如比例尺、循环小数等,但它们与旧知识都有内在联系。我就充分运用旧知识来引出新概念。在备课时要分析这个新概念有哪些旧知识与它有内在的联系。利用学生已掌握的旧知识讲授新概念,学生是容易接受的。苏霍姆林斯基说:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”从心理学来分析,无恐惧心理,学生容易活跃;无畏难情绪,易于启发思维;旧知识记忆好,容易受鼓舞;所以运用旧知识引出新概念教学效果好。例如从求出几个数各自的“倍数”从而引出“公倍数”、“最小公倍数”等概念。总之,把已有的知识作为学习新知识的基础,以旧带新,再化新为旧,如此循环往复,既促使学生明确了概念,又掌握了新旧概念间的联系。
3.通过实践认识事物本质、形成概念
常言说,实践出真知,手是脑的老师。学生通过演示学具,可以理解一些难以讲解的概念。如一年级小学生初学数的大小比较。是用小鸡小鸭学具,一一对比。如一只小鸡对一只小鸭,第二只小鸡对第二只小鸭,……直到第六只小鸡没有小鸭对比了,就叫小鸡比小鸭多1只。又如二年级小学生学习“同样多”这个概念也是用学具红花和黄花,学生先摆7朵红花、再摆和红花一样多的7朵黄花,这样就把“同样多”这个数学概念,通过演示(手),思维(脑),形成概念,符合实践、认识,再实践、再认识的规律。这比老师演示、学生看,老师讲解、学生听效果好,印象深、记忆牢。
4、从具体到抽象,揭示概念的本质
在教学中既要注意适应学生以形象思维为主的特点,也要注意培养他们的抽象思维能力。在概念教学中,要善于为学生创造条件,引导他们通过观察、思考、探求概念的含义,沿着由感性认识到理性认识的认知过程去掌握概念。这样,可以培养学生的逻辑思维能力。如圆周率这个概念比较抽象。一般教师都是让学生通过动手操作认识圆的周长与直径的关系,学生通过观察、思考,分析,很快就发现不管圆的大小如何,每个圆的周长都是直径的3倍多一点。教师指出:“这个倍数是个固定的数,数学上叫做“圆周率”。这样,引导学生把大量感性材料,加以分析综合,抽象概括抛弃事物非本质东西(如圆的大小,纸板的颜色,测量用的单位等)抓住事物的本质特征(不论圆的大小,周长总是直径的3倍多一点)。形成了概念。
5、用“变式”引导学生理解概念的本质
在学生初步掌握了概念之后,我经常变换概念的叙述方法,让学生从各个侧面来理解概念。概念的表述方式可以是多种多样的。如质数,可以说是“一个自然数除了1和它本身,不再有别的因数,这个数叫做质数。”有时也说成“仅仅是1和它本身两个因数的倍数的数”。学生对各种不同的叙述都能理解,就说明他们对概念的理解是透彻的,是灵活的,不是死背硬记的。有时可以变概念的非本质特征,让学生来辨析,加深他们对本质特征的理解。
6、对近似的概念加以对比
在小学数学中,有些概念的含义接近,但本质属性有区别。例如:数位与位数、体积与容积,减少与减少到等等相对应概念,存在许多共同点与内在联系。对这类概念,学生常常容易混淆,必须把它们加以比较,避免互相干扰。比较,主要是找出它们的相同点和不同点,这就要对进行比较的两个概念加以分析,看各有哪些本质特点。然后把它们的共同点和不同点分别找出来,使学生既看到进行比较对象的内在联系,又看到它们的区别。这样,学的概念就会更加明确。对近似的概念经常引导学生进行比较和区分,既能培养学生对易混概念自觉地进行比较的习惯,也能提高学生理解概念的能力。多年来教学实践的体会:重视培养学生的比较思想有几点好处:(1)有利于培养学生思维的逻辑性。(2)有利于提高学生的分析问题的能力。(3)有利于培养学生系统化的思维方式。
7、教师要帮助学生总结归纳出概念的含义
教学中学生的主体地位是必要的,但教师在教学的全过程中的主导地位也不能忽视。教师应发挥好主导作用。教师与学生的主、客体地位是相互依存,在一定条件下又相互转化。在概念教学中,教师要善于为学生创造条件,让学生沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样极易调动学生的积极性、主动性,也可以教会学生去发现真理。比如我教质数,合数两个概念。我先板书几个数:1、2、3、4、5、6、8、9、11、12,让同学分别写出每个数的因数来。为了便于学生观察,有意识地做如下的排列,学生写出下列答案:
1——12——1、26——1、2、3、63——1、34——1、2、45——1、58——1、2、4、811——1、119——1、3、912——1、2、3、4、6、12
订正后,让学生仔细观察,找自然数的因数规律。学生观察后发现了规律。有的说有三种规律,有的则认为四种情况。我表扬同学观察分析得好。是三种规律。于是又启发他们看是哪三种?①一个自然数只有一个因数;②一个自然数有两个因数;③一个自然数有三个以上因数。在这个情况下,我再次启发:一个因数的是什么样的数?两个的是什么样的?三个以上又是什么样的因数?学生则发现一个的只有1;两个的则有1还有本身;三个以上的则有1、自己本身、还有其它的因数。最后老师一一肯定,并由学生看书后总结出质数、合数概念,这时学生很受鼓舞,认为自己发现了真理。对质数、合数的概念印象极为深刻永不忘记。我又有意识地让学生研究“1”到底算哪类?学生沉默了,我说:“从书上找找是怎么说的?知道的就发言”。通过学生的口,说出“1”既不是质数,也不是合数。我问:“为什么”?学生答:因为“1”的因数只占一条,算1就没有本身,算本身又没有“1”,这样可比老师直接告诉、或叮咛他们注意主动。让学生在教师的帮助下,把大量感性材料经过分析综合,抽象概括。抛弃事物和现象的非本质的东西,抓住事物和现象的本质特征形成概念。因为是学生付出了脑力劳动而获取得到的,所以容易理解,记忆也牢固。
二有效巩固概念
教学中不仅要求学生理解概念,而且还要使学生熟记并灵活地运用概念。我认为概念的记忆与应用是相辅相成的。因此在教学中,加强练习,及时复习并做归纳整理,对巩固概念具有特殊意义。
1、学过的概念要归纳整理才能系统巩固
学习一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做,就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。
2、通过实际应用,巩固概念
学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。
3、综合运用概念,不仅巩固概念,而且检验概念的理解情况。
在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活,灵巧,能考察多方面的数学知识,是近些年来巩固数学概念一种很好的练习内容。
练习概念性的习题,目的在于让学生综合运用,区分比较,深化理解概念。所安排的练习题,应有一定梯度和层次,按照概念的序,学生认识的序去考虑习题的序。要根据学生实际和教学的需要,采用多种形式和方法设计,借以激发学生钻研的兴趣,达到巩固概念的目的。尤其应组织好概念性习题的教学,引导学生共同分析判断。
多年来的教学实践,使我深刻地体会到:要想提高教学质量,教师用心讲好概念是非常重要的,既是落实双基的前提,又是使学生发展智力,培养能力的关键。但这也仅仅是学习数学的一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。只有这样,培养能力,发展智力才会有坚实的基础。
- 上一篇:浅谈小学生灵活运用解题方法的探讨
- 下一篇:生动教学在课堂中的应用