论数学建模在高等教学的重要性

时间:2022-01-02 03:10:27

导语:论数学建模在高等教学的重要性一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

论数学建模在高等教学的重要性

一、高等数学课程的重要性

学好高等数学课程,不仅可以学到像数学概念、公式、定理结论这样的理论知识,并在定理、公式的推导过程中更能培养人的逻辑思维能力,提高数学素养,同时是学好后续专业课程例如西方经济学等学科有力保障。高等数学课程更重要的作用是培养学生的理性思维和思辨能力;能启迪智慧,开发创新、创造能力。因而高等数学课程授课效果的好坏直接影响到金融类院校人才的培养质量的高低。在这种形势下,全国金融类院校都开设了高等数学课程。

二、高等数学课程授课现状

每一个讲授高等数学课程的教师在第一次上课时,几乎都会对学生阐述这门课程的重要性。一方面会强调这门课程的理论基础知识的重要性,另一方面强调它在解决实际问题中的应用性等等。大多数学生更感兴趣的这门课程在实际中的应用,但是在实际教学过程中,教师却很难将理论知识应用到实际去解决一些实际问题,理论和实际严重脱节,长期以来,现在高校普遍的高等数学教学教学,为了完成教学任务而“满堂灌”的现象仍旧是普遍存在的,不讲究教学方法,不能做到因材施教,教师授课没有热情,平铺直叙,照本宣科,授课过程枯燥无味,课堂气氛死气沉沉,几乎没有互动。采用的教学手段依然是粉笔加黑板、课本加教案的传统授课模式,现代化的多媒体教学手段应用几乎为零。多种原因都有可能导致学生对高等数学产生抵触情绪、畏难情绪,失去学习这门课程的兴趣。因此要改变目前高等数学课程的学习现状,高等数学的教学改革已经势在必行,刻不容缓。实践证明,如果教师能在讲授重点、难点知识时,引入适当的数学建模案例,不但易于学生对理论知识的理解,更能增强学生运用学到的理论解决实际问题的能力。从而可以纠正一些学生认为的“高数数学无用论“的思想,激发学生学习数学的热情、兴趣,培养学生的创新力、创造力,提高学生的数学素养与综合素质。

三、数学建模在高等数学教学中的重要性

课程的着重点为挖掘和展现数学理论知识中的数学思维方法及将理论应用到实践。在授课过程中,要求教师对重要概念、定义,要能讲清背景来源,以及它们所体现出的数学思想方法。对教材上的重点例题、典型习题的分析要体现数学思维过程,分析出难点、关键点,新知识如何在题目中应用的,这样才能有助于学生对新知识的理解和运用。课堂上,采用启发式教学,使学生能对教师所授新知识能进行分析、总结、整理,进而能培养学生提出问题、分析问题、解决问题的能力。从而一方面为后继专业课程的学习奠定必要的理论基础,另一方面使学生初步拥有运用数学理论知识解决实际问题的能力。进而培养学生严谨、缜密的科学态度,逐步提高提出问题、分析问题和解决问题的能力。

1.有利于学生对概念的理解与掌握

高等数学中的概念与初等数学相比则更抽象,如极限的精确定义、导数、定积分等,学生在学习这些概念时总想知道这些概念的来源和应用,希望在实际问题中找到概念的原型。事实上,数学中的概念本身就是从客观事物的数量关系中抽象出来的数学模型,它必然与某些实际原型相对应着。因此引入数学概念时,融入数学建模是完全可行的,每当引入新概念时,都可以选择相关的实例来说明这部分内容的实用性。在概念引入时,尽可能选取生活中的常见小问题来还原现实情境后的数学,使学生能够了解概念、定义的来龙去脉,让学生感受到这些定义不是硬性规定的,而是与实际生活紧密相连的。从而便于学生对概念的理解与掌握。例如,在给出“定积分”这个概念时,强调定积分的思想是“分割取近似,求和取极限”。从求曲边梯形面积、变速直线运动的路程、变力做工等生活中常见的实际问题入手。尽管要求的这些问题的实际意义不同,但求解它们的方法及步骤却都是一样的,即都可以通过无限细分、取近似、求和、取极限的思想方法来实现求解过程。最终都可以抽象成为一个和式的极限,从而得到定积分的概念。

2.有利于激发学生学习高等数学课程的兴趣与热情

高等数学教学中长期以来都是重视理论基础、轻实践应用。教师在授课过程中注重基础理论知识的整体性、统一性,根据教学大纲的要求,按部就班的按照传统授课方法,以完成教学工作任务为目标。而对教材中关于理论基础知识应用的部分或是删除、或是略讲。同时高等数学课堂上基本上是以教师讲授为主,学生参与较少、活着几乎没有,定义定理的讲解、证明过程枯燥无味,再加上套用现成公式来解题的做题方法,导致学生没有学习的兴趣,学生即使能做题,也是知其然不知其所以然,缺乏应用数学解决实际问题的能力。长此以往,在学生眼中,数学就成了晦涩难懂、高不可攀的一门高深学问。在高等数学课程教学环节中数学建模案例模型,例如引入“生猪最佳出售时机模型”,使学生了解到可以用简单的数学知识解决重要的实际问题,从而发现数学理论知识不是超越现实的、抽象的,并在完善案例模型的过程中提高数学理论知识的学习。高等数学教学的目的不是为了培养从事专门进行数学研究的人才,而是要学生懂得数学是工具,教会学生这个工具来解决实际问题才是根本。当通过具体数学模型案例,使学生真正体会到了数学在解决实际问题中的巨大作用,可以增强学生的学习数学的主动性,并对高等数学课程产生浓厚的学习兴趣,利于高等数学课程学习的顺利完成。

3.有利于学生对数学理论知识的应用,提高学生专业素质

从月蚀中地球的阴影计算出月球、地球之间的距离是古代数学建模的经典案例,而牛顿的万有引力定律则是现代数学建模的成功运用的案例之一。诸如最优捕鱼策略、生猪的最佳出售时机、投资的收入和风险等现代数学模型表明,数学建模的应用已经不仅仅局限在天文学、物理学、化学领域,而已经快速地向生物、经济、金融等领域延伸,几乎在人类社会生活的每个角落都能看到它所发挥的无穷威力。近年来,随着计算机的飞速发展,数学的应用性更是得到充分发挥。利用数学方法解决实际问题时,首先要进行的工作是分析问题建立数学模型,然后利用计算机软件对模型进行求解。高等教育中本科阶段,大部分高校的人才培养目标是培养应用型人才,而培养这类人才的关键是培养学生应用数学理论知识的能力。数学建模是将理论知识与实际问题联系起来的桥梁和纽带。因此在高等数学授课过程中引入数学建模,在便于学生理论知识学习的同时,加强学生对数学理论知识的应用性。教师应注重学生专业背景,引入与学生所学专业相关的数学模型,这样才能有助于激发学生的学习积极性,即用所学高等数学知识解决了实际问题,又提高了学生专业素养。

总之,数学建模在高等数学教学中起着重要作用,在加深学生对教材的概念的理解掌握的同时,能激发学生学习数学的兴趣与热情,发挥学生学习的主观能动性,提高学生运用理论知识解决实际问题的能力,为提高高等数学课程教学质量奠定坚实基础。

本文作者:杨丽石琦宋晓光富强工作单位:哈尔滨金融学院