温室监控系统设计论文

时间:2022-08-02 09:20:08

导语:温室监控系统设计论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

温室监控系统设计论文

摘要:为了更好地满足农业发展要求,设计一套基于组态软件的智能温室监控系统。系统主要由主控制器、传感器、执行机构及系统组态软件构成。笔者分别从主控制器硬件设计、传感器选型、主程序设计、通信接口设计、组态软件界面设计等方面进行阐述。系统在杨凌农业示范园进行了实地测试。测试结果表明,本系统硬件结构可靠、软件系统运行情况良好,操作简单,使用方便,可满足温室大棚智能监控的需求,实现了预期功能。

关键词:组态软件;智能温室;系统设计

智能温室是现代农业的重要组成部分,早在20世纪70年代,国外就开始对智能温室环境监控技术进行研究,其中日本、荷兰、以色列、美国等发达国家智能温室监测技术发展的最快。国外智能温室最早采用模拟式的组合仪表,采集温室环境因子参数,并通过相关设备进行指示、记录和控制。随后又出现了分布式监测系统以及计算机数据采集监测系统的多因子综合监测系统。温室产业在我国农业中的比重不断增加,加快了我国现代化农业发展的速度。“组态”的概念是伴随着集散型控制系统(DistributedControlSystem,DCS)的出现,才被广大自动化技术人员所熟悉的。在监控技术的不断发展和应用过程中,组态软件因为界面直观、便于二次开发、使用方便而一直占据着非常重要的地位,因此,基于组态软件设计了一套温室监控系统。

1系统总体设计

农作物的生长受到各种不同环境因子的影响,这些环境因子对作物生长发育的影响各不相同[1]。目前,科学家分析影响植物生长的环境因子达52种,其中空气温度、空气湿度、土壤温度、土壤湿度、光照强度、二氧化碳浓度是影响植物生长最主要的几种环境因子。根据系统监测与控制需求分析,确定系统结构如图1所示。

2系统硬件设计

2.1传感器选型

要实现对温室环境因子参数的监测,必须选择适合系统的传感器[2]。为了便于电路设计,系统土壤温湿度传感器选择上海搜博公司生产的SLHT5温湿度传感器。该传感器内置SHT10器件,主要用于土壤温湿度测量。光照度传感器选用ROHM公司的BH1750传感器。该传感器是一种用于两线式串行接口的数字型光强度传感器,内部包含一个16位模数转换器,直接输出数字信号。因此,该传感器使用时不需再进行复杂计算,使用非常方便。二氧化碳传感器选用MH-Z14NDIR红外二氧化碳传感器。该传感器利用非色散红外(NDIR)原理对空气中存在的二氧化碳进行检测,是一款高分辨率、高灵敏度的传感器,无氧气依赖性,寿命长,供电电压为4~6V,提供UART、模拟电压信号、PWM波形等多种输出方式。该传感器内置温度传感器,可进行温度补偿,具有良好的线性输出能力。几种传感器外形如图2所示。

2.2主控制器设计

系统主控制器性能的好坏直接影响系统可靠性。本系统采用基于ARMCortex-M3内核的STM32系列单片机[3]。系统选用STM32F103VE作为主控芯片,主频72MHz,内部含有256K字节的FLASH和64K字节的SRAM,LQFP100封装。操作系统选用了μC/OS-Ⅱ嵌入式实时操作系统[4]。主控制器结构框图如图3所示。

3系统软件设计

软件是整个系统的灵魂,对于系统的运行来说至关重要,各个操作都是在软件的协调下进行的。系统的软件设计包括温室控制系统的软件设计、通信接口驱动程序设计、上位机管理软件的设计等。本系统上位机软件因选取组态软件,此处不再赘述。

3.1系统主程序

系统的主程序是软件设计的核心环节,对整个程序架构起关键作用。系统上电后,将进行初始化,随后进入主程序。系统可以进行模式选择,分为手动和自动两种方式。在进入相应的子程序后,将逐步完成按键的扫描和服务、控制方式设置、环境参数采集、通信接口驱动和执行处理控制等程序,主程序流程图如图4所示。

3.2CAN总线通信协议

CAN总线有其自身的特色,传送的报文没有目标地址,采取全网广播方式,每个节点通过反映数据性质的报文标识符筛选报文,能够实现即插即用,可在线上网下网,增强了数据的安全性,满足控制系统及其他较高数据要求的系统需求。CAN总线通信软件设计包括CAN总线的初始化、报文发送和报文接收3个模块[5]。本系统所使用的芯片因其有专门一整套为其设计的固件驱动程序,因而大大简化了编程过程,为开发者省去了许多时间,可以将更多的精力放在实现系统功能上。

4组态监控系统设计

本系统上位机软件选用组态王组态软件。组态王(Kingview)是由北京亚控自动化软件有限公司开发的一款具有易用性、开放性和集成能力的通用组态软件。使用组态王的基本流程为:设计图形界面、构造数据库、建立动画连接、运行和调试。上位机是系统与用户直接对话的窗口。组态王提供了丰富的系统界面设计资源。本系统分别设计了登录界面、温室状态与控制界面、参数修改界面、实时与历史曲线界面、报警与事件界面,实现了系统相关功能[6]。

5结语

系统完成设计后,配合硬件试验资源,在杨凌农业示范园进行了实地测试,系统测试运行界面如图5所示。测试结果表明,基于组态软件的温室智能监控系统能够实现系统预期功能,操作简单、使用方便,系统运行情况良好。

作者:冯春卫 闵卫锋 单位:杨凌职业技术学院

参考文献

[1]肖乾虎.基于ZigBee/GPRS的作物生长环境因子远程监测系统研究[D].海口:海南大学,2014.

[2]杨少春.传感器原理及应用[M].北京:电子工业出版社,2010.

[3]王丹丹,宗振海,陈慧珊,等.基于STM32的智能温室远程控制系统的设计[J].浙江农业学报,2014,26(3)791-796.

[4]朱琳,郭永.基于STM32的工业通用控制器的研究和实现[J].化工自动化及仪表,2012:224-227.

[5]傅仕杰,张英梅,王乐.基于STM32温室环境测控系统的研究[J].农业网络信息,2010(12).

[6]杨学坤,诸刚,胡瑶玫.基于组态王的温室环境自动监控系统监控软件设计[C]//全国经济管理院校工业技术学研究会.2012:189-192.