高速数据采集设计管理论文

时间:2022-07-16 04:17:00

导语:高速数据采集设计管理论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

高速数据采集设计管理论文

【摘要】本文主要阐述了USB2.0接口和DSP构成的高速数据采集系统的工作原理、结构组成及其设计与实现。为达到设计的要求,详细地对其系统组成器件的选择及其特性和硬件的连接作了说明。重点介绍了USB技术及其软件设计。在这部分中,介绍了讲述了相关的主机接口,这类接口简化了主机内部客户软件与设备应用之间的通信。本章所涉及的具体实例部分只是作为例子,以阐述主机系统响应USB设备请求的行为。USB主机可以提供不同的软件系统实现方法,完成相应的主机操作。系统软件设计过程中常见故障的分析。

【关键词】USB2.0接口DSP高速数据采集系统

TheAnalysisandDesignThatUSB2.0ConnectstheHigh-speedDataThatandDSPDonstitutetoCollecttheSystem

AbstractThistextmainlyelaboratedthattheUSB2.0connectsthehigh-speeddatathatandDSPconstitutetocollecttheworkprinciple,structureofthesystemtoconstituteanditdesignswiththerealization.Inordertoattaintherequestofdesign,detailedastoit''''sthesystemconstitutedthechoiceofthemachinepieceandtheconjunctionofthehardwarestomaketheelucidation.ThepointintroducedtechniqueofUSBanditssoftwaredesigns.InthissectiondescribesthehostinterfacesnecessarytofacilitateUSBcommunicationbetweenasoftwareclient,residentonthehost,andafunctionimplementedonadevice.Theimplementationdescribedinthischapterisnotrequired.ThisimplementationisprovidedasanexampletoillustratethehostsystembehaviorexpectedbyaUSBdevice.AhostsystemmayprovideadifferenthostsoftwareimplementationaslongasaUSBdeviceexperiencesthesamehostbehavior.Inthesystemsoftwaredesignprocesstheanalysisofthefamiliarbreakdown.

KeywordsUSB2.0interfacesDSPThehigh-speeddatacollectsthesystem

一绪言

随着数字信号处理理论和计算机的不断发展,现代工业生产和科学技术研究都需要借助于数字处理方法。进行数字处理的先决条件是将所研究的对象进行数字化,因此数据采集与处理技术日益得到重视。在图像处理、瞬态信号检测、软件无线电等一些领域,更是要求高速度、高精度、高实时性的数据采集与处理技术。现在的高速数据采集处理卡一般采用高性能数字信号处理器(DSP)和高速总线技术的框架结构。DSP用于完成计算量巨大的实时处理算法,高速总线技术则完成处理结果或者采样数据的快速传输。DSP主要采用TI或者ADI公司的产品,高速总线可以采用ISA、PCI、USB等总线技术。目前,使用比较广泛的是PCI总线,虽然其有很多优点,但是存在如下严重缺陷:易受机箱内环境的影响,受计算机插槽数量的地址、中断资源的限制而不可能挂接很多设备等。USB总线由于具有安装方便、传输速率高、易扩展等优点,其中USB2.0标准有着高达4800bps的传输速率,已经逐渐成为计算机接口的主流。本设计是一个采用USB2.0接口和高性能DSP的高速数据采集处理系统,主要是为光纤通信中密集波分复用系统的波长检测与调整所设计的,也可以应用于像图像处理、雷达信号处理等相关领域。

二系统原理及器件选用

(一)系统原理及简介

整个高速数据采集处理系统的硬件构成为:高速ADC、高速大容量数据缓冲存储器、高性能DSP和USB2.0接口。系统组成的原理框图如图2-1所示。

外界输入信号经A/D采样后,采集到的数据先保存在高速数据缓存中,数据采集结束后DSP从缓存中读取数据开始信号处理。信号处理的算法已编成程序保存在外部的Flash芯片上,供DSP上电读程序到其内部RAM单元,全速运行程序。信号处理后的数据通过USB2.0接口依次传送到主机方,把数据数值存储在PC机内。

(二)系统组成器件的选择

高性能DSP采用TI公司的TMS320C6000系列定点DSP中的TMS320C6203B;高速ADC采用TI公司的ADS5422,12位采样,最高采样频率为105MHz;PC机接口采用USB2.0,理论最大数据传输速率为480Mbps,器件选用Cypress公司EZ-USBFX2系列中的CY7C68013;数据缓冲采用IDT公司的高速大容量FIFO器件IDT72V2113;程序存储在Flash存储器中,器件选用SST291E010。下面逐一介绍各个器件的主要特性。

1.高速A/D转换器

高速A/D转换器选用美国TI公司生产的高速并行14位模数转换器ADS5422,其最高采样频率达到62MHz,采样频率为100MHz时,SNR(信躁比)为72dB,SFDR(寄生动态范围)为85dB。模拟信号输入可以是单端输入方式或者差分输入方式,最高输入信号峰峰值为4V,单一5V电源供电。输出数字信号完全兼容3.3V器件,并且提供输入信号满量程标志以及输出数字信号有效标志,从而方便和其它器件的连接。

2.高速缓存FIFO

高速缓存是系统中的一个关键环节。IDT72V2113是由美国IDT公司生产的高速大容量先进先出存储器件(FIFO)。其最高工作频率为133MHz;容量为512KB,可以通过引脚方便的将容量设置成512K×9bit或者256K×18bit两种方式;IDT72V2113可以设置标准工作模式或者FWFT(FistWordFallThrough)工作模式,并提供全满、半满、全空、将满以及将空等五种标志信号,非常方便进行容量扩展。

大容量数据存储是高速数据采集系统迫切需要解决的问题,例如,一个20M采样速率、8位的ADC,在一秒钟的时间内所采集到的数据量是20M字节,虽然IDT72V2113的单片容量是512K×9bit,可以很好的满足一般的数据采集系统的需要,但是,对于高速、无间隔的数据采集系统来说,一片的容量是不够的。IDT72V2113便于扩展的特性可以很容易地解决这个问题,而且不需要外部控制电路,连接简单、可靠,很方便电路设计及软件开发。其容量扩展可以分为字长扩展和深度扩展。

IDT72V2113的字长扩展比较简单,只要把各个芯片的控制信号连在一起就可以实现。这里需要注意的是EF/IR和FF/OR两个引脚,在标准模式下这两个管脚的功能为EF和FF,把各个芯片这两个管脚分别相与;在FWFT模式下,这两个管脚功能为IR和OR,把各个芯片的这两个管脚分别相或,这样就可以确保同步读写每一个IDT72V213。

IDT72V2113的深度扩展方式仅适用于FWFT工作模式。其中,传输时钟可以选择写时钟和读时钟中频率较高的那个时钟信号。工作原理为:当有数据写入第一片FIFO中后,其输出允许信号(OR)低有效,从而使第二片FIFO的写使能信号有效;同时,只要第二片FIFO中仍有空间,它的输入允许信号(IR)低有效,从而使第一片FIFO的读使能信号(REN)有效,这样,在传输时钟的驱动下,数据由第一片FIFO向第二片FIFO传送,直到第二片FIFO写满为止,以后的数据将储存在第一片FIFO中。通过深度扩展,两片IDT72V2113可形成容量为1M×9bit的数据缓冲。

IDT72V2113不仅可以通过字长扩展和深度扩展来实现容量扩展,而且可以将两者结合起来,进行更大容量的扩展,如用四片IDT72V2113扩展成容量为1M18bit的数据缓冲。

3.高性能DSP处理器

DSP是整个采集系统的核心。TMS320C6203B是TI公司高性能数字信号处理器TMS320C6000系列的一种,采用修正的哈佛总线结构,共有一套256位的程序总线、两套32位的程序总线和一套32位的DMA专用总线;内部有8个功能单元可以并行操作,工作频率最大为300M,最大处理能力为2400MIPS;内部集成了丰富的外围设备接口,如外部存储器接口(EMIF)、外部扩展总线(XB)、多通道缓冲串口(McBSPS)和主机接口(HPI),与外部存储器、协处理器、主机以及串行设备的连接非常方便。

TMS320C6203B的DMA控制器有以下特点:共有4个通道,32位寻址能力,可以对存储器映射空间的任何一个区域进行访问;传送数据支持8位、16位和32位字长;灵活的地址产生方式,支持多帧传输方式;每次传输完毕后,可以进行DMA通道的自动初始化;传输操作可以由选择的同步事件触发。DMA寄存器的设置包括以下几个寄存器:通道的主、副控制寄存器,通道的源地址、目的地址寄存器,通道传输计数寄存器,DMA全局地址寄存器,DMA全局索引寄存器,DMA全局计数重载寄存器。

TMS320C6203B的外部扩展总线(XB)宽度为32位,可以连接外部异步设备、异步或同步FIFO、PCI控制器和其他一些外部控制器。外部扩展总线由I/O总线和主机口接口组成。I/O总线有异步I/O工作模式和同步FIFO工作模式,其中同步FIFO模式与标准同步FIFO可以实现无缝连接,可以同时无缝实现四个FIFO写借口或者实现三个FIFO写接口及一个FIFO读接口。通过无缝连接实现FIFO读接口,FIFO必须连接到XCE3空间。

4.USB2.0接口

USB(UniversalSerialBus)总线是Intel、NEC、Microsoft、IBM等公司联合提出的一种新的串行总线接口规范。为了适应高速传输的需要,2000年4月,这些公司在原1.1协议的基础上制订了USB2.0传输协议,已超过了目前IEEE1394接口400Mbps的传输速度,达到了480Mbps。USB总线使用简单,支持即插即用PnP(PlugAndPlay),一台主机可串连127个USB设备。设备与主机之间通过轻便、柔性好的USB线缆连接,最长可达5m,使设备具有移动性,可自由挂接在具有USB接口的运行在Windows98/2000/XP平台的PC机上。USB总线已被越来越多的标准外设和用户自定义外设所使用,如鼠标、键盘、扫描仪、音箱等。

CY7C68013是美国Cypress公司推出的EZ-USBFX2系列中的USB2.0芯片,是目前市面上比较少的符合USB2.0标准的USB控制器之一,是一个全面集成的解决方案,它占用更少的电路板空间,并缩短了开发时间。

上电后,ADS5422一直工作,采样产生的数据是否存储到IDT72V2113中,由TMS320C6203B的DX0引脚状态来决定。TMS320C6203B进行初始化,外部扩展总线的XCE3设置为同步FIFO读操作模式。DMA通道0配置为每次传输1帧,每帧1024个半字,同步事件设置为外部中断4,触发极性为高电平,初始化定时器0,定时间隔为22ms。当外部同步信号到来时,启动定时器0,手动启动DMA通道0,同时设置DX0为低电平。ADS5422采样产生的数据开始写入IDT72V2113,当定时器0中断到来时,设置DX0为高电平,关闭IDT72V2113的写使能,采样数据不再存储到IDT72V2113内。随着数据不断写入IDT72V2113,当其内部的数据量大于1023个半字时,IDT72V2113的将空标志信号(PAE)由低电平变为高电平,使得TMS320C6203B的外部中断信号有效,从而触发DMA传输,TMS320C6203B的DMA通道0通过外部扩展总线(XB)读取1024个半字的数据,存储于内部RAM中,传输结束后向TMS320C6203B发送中断,通知TMS320C6203B处理数据。待其处理完数据后,通过USB2.0接口发送处理结果,然后重新启动DMA通道0,进行下一次DMA传输。如此循环,直到处理完所有数据。当下一个外部同步信号到来时,进行下一轮数据采集处理过程。