BP神经网络控制优化论文
时间:2022-03-12 09:53:00
导语:BP神经网络控制优化论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要以加热炉控制系统为研究对象,提出了一种基于遗传算法改进的bp网络优化PID控制参数方法,并与经典的临界比例度—Ziegler-Nichols方法进行比较。仿真结果表明该算法具有较好的控制效果。
关键词PID控制;BP神经网络;遗传算法;参数优化
1引言
由于常规PID控制具有鲁棒性好,结构简单等优点,在工业控制中得到了广泛的应用。PID控制的基本思想是将P(偏差的比例),I(偏差的积分)和D(偏差的微分)进线性组合构成控制器,对被控对象进行控制。所以系统控制的优劣取决于这三个参数。但是常规PID控制参数往往不能进行在线调整,难以适应对象的变化,另外对高阶或者多变量的强耦合过程,由于整定条件的限制,以及对象的动态特性随着环境等的变化而变化,PID参数也很难达到最优的状态。
神经网络具有自组织、自学习等优点,提出了利用BP神经网络的学习方法,对控制器参数进行在线调整,以满足控制要求。由于BP神经网络学习过程较慢,可能导致局部极小点[2]。本文提出了改进的BP算法,将遗传算法和BP算法结合对网络阈值和权值进行优化,避免权值和阈值陷入局部极小点。
2加热炉的PID控制
加热炉控制系统如图1所示,控制规律常采用PID控制规律。
图1加热炉控制系统简图
若加热炉具有的数学模型为:
则PID控制过程箭图可以用图2表示。
其中,
采用经典参数整定方法——临界比例度对上述闭环系统进行参数整定,确定PID控制器中Kp=2.259,Ki=0.869,Kd=0.276。参考输入为单位阶跃信号,仿真曲线如图3所示。
图2PID控制系统
图3Z—N整定的控制曲线
仿真曲线表明,通过Z—N方法整定的参数控制效果不佳,加上PID参数不易实现在线调整,所以该方法不宜用于加热炉的在线控制。
3基于遗传算法改进的BP神经网络PID控制器参数优化整定
对于加热炉控制系统设计的神经网络自整定PID控制,它不依赖对象的模型知识,在网络结构确定之后,其控制功能能否达到要求完全取决于学习算法。
3.1遗传算法改进的BP算法实现
一般BP网络结构如图4所示,其算法步骤为:
(1)输入训练样本,按网络结构得到输出;
(2)将实际输出与希望输出比较,得到误差,根据误差调节阈值和权值。重复两个步骤,直到误差满足要求为止;
研究表明,采用上述BP算法逐步调整权值和阈值,可能导致学习过程收殓速度慢,训练时间过长,又易陷入局部极小点而得不到最佳的权值和阈值分布。为了加快学习速率,已经有了一些优化BP算法[3],采用动态学习因子和惯性因子。这些方法在加快网络收殓速度方面比较显著,能较好地避免网络陷入局部极小。遗传算法不要求目标函数具有连续性,而且可以对复杂的多峰的,非线性及不可微的函数实现全局寻优,因此容易得到全局最优解或性能很好的次优解。将遗传算法和BP算法相结合可以具有寻优的全局性和精确性。算法过程为:
(1)对权值和阈值编码生成初始种群,由于是多参数优化问题,采用多参数映射编码;
(2)计算适应度值;
(3)如果不满足遗传算法停止条件,则对当代种群进行交叉、选择和变异产生新的个体,转(2);否则,转(4);
(4)对遗传算法找到的较好的解空间,采用BP算法在这些小的解空间中搜索出最优解。
3.2PID参数优化
由图5可知,神经网络根据系统的运行状态,通过在线调整PID的三个参数Kp,Ki,Kd,以达到某种性能指标的最优化。
图5BP网络整定PID参数原理图
经典增量式PID的控制算法:
算法步骤:
(1)确定网络结构,采用3—4—3的结构,输入分别为e(k),e(k)-e(k-1),e(k)-2e(k-1)+e(k-2)。输出为Kp,Ki,Kd。
(2)选择初始种群N=60,交叉概率Pc=0.08,权值,阈值的范围和初始化。选取目标函数为(偏差绝对值积分):,适应度函数为:
(3)采样得到rin(k)和yout(k),计算该时刻的误差。
(4)对网络进行学习,在线调整权值,阈值,计算神经网络的各层输入,输出,得到三个可调参数Kp,Ki,Kd。计算系统输出。
(5)计算适应度若不满足要求,转入第(3)步。
(6)找到最优的Kp,Ki,Kd,对系统仿真。
图6BP网络整定的控制曲线
仿真结果显示,用BP神经网络整定的PID控制系统比经典的Z—N(临界比例度)法有更快的响应特性,良好的动态特性和比较强的鲁棒性。
4结束语
由于神经网络具有自组织、自学习等优点,本文提出的优化的BP神经网络相结合的方法对控制器参数进行寻优,可根据对象的变化情况对控制器参数的在线调整,满足控制对象的动态特性随着环境变化而变化的要求。达到好的控制效果。遗传算法与BP网络的结合弥补了BP网络学习过程收敛速度慢,可能陷入局部级小的不足。
参考文献
[1]王树青等编著.工业过程控制工程[M].北京:化学工业出版社,2002
[2]李士勇著.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔并工业大学出版社,1996
[3]胡志军,王建国,王鸿斌.基于优化BP神经网络的PID控制研究与仿真[J].微电子学与计算机2006,23(12):138—140
[4]张文修著.遗传算法的数学基础[M].西安:西安交通大学出版社,2003
[5]韩力群著.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002
[6]赵文峰著.Matlab控制系统设计与仿真[M].西安:西安电子科技大学出版社,2003
- 上一篇:网络证券研究应用论文
- 下一篇:企业班组目标管理论文