数学建模与素质教育探究论文
时间:2022-03-01 02:23:00
导语:数学建模与素质教育探究论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
素质教育是指依据人的发展和社会发展的实际需要,以全面提高全体学生的基本素质为根本目的,以尊重学生主体性和主动精神,注重开发人的智慧潜能,注重形成人的健全个性为根本特征的教育。
数学建模是指把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。
全国大学生数学建模竞赛组委会主任李大潜院士2002年5月18日在数学建模骨干教师培训班上的讲话中说道:“数学教育本质上是一种素质教育,数学建模的教学及竞赛是实施素质教育的有效途径。”
李大潜院士的讲话一语道破“天机”,一下子解决了长期以来困扰数学工作者和学习数学者面临的或者无法参悟的问题,有力地指出了数学建模与实施素质教育的关系。李大潜院士提出的关于数学建模与实施素质教育的关系势必为推动素质教育的发展提供了新的动力和方向。
笔者参加工作以来,一直从事数学教学工作。从学习数学到数学教学,特别是经过多年的数学教学工作,也曾遭遇过类似的“尴尬”,多年来始终没有对数学建模与实施素质教育二者之间的关系形成系统的认识。但在学习了李大潜院士的讲话精神后,方才恍然大悟,经过认真整理与分析,结合自己的学习、工作实际,终于对此二者之间的关系有了进一步的认识。实际上,我们的工作,特别是数学教学工作,就是对学生进行严格的数学训练,可以使学生具备一些特有的素质,而这些素质是其他课程的学习和其他方面的实践所无法代替或难以达到的。这些素质初步归纳一下,有以下几个方面:
1.通过数学的训练,可以使学生树立明确的数量观念,“胸中有数”,认真地注意事物的数量方面及其变化规律。
2.提高学生的逻辑思维能力,使他们思路清晰,条理分明,有条不紊地处理头绪纷繁的各项工作。
3.数学上推导要求的每一个正负号、每一个小数点都不能含糊敷衍,有助于培养学生认真细致、一丝不苟的作风和习惯。
4.数学上追求的是最有用(广泛)的结论、最低的条件(代价)以及最简明的证明,可以使学生形成精益求精的风格,凡事力求尽善尽美。
5.通过数学的训练,使学生知道数学概念、方法和理论的产生和发展的渊源和过程,了解和领会由实际需要出发、到建立数学模型、再到解决实际问题的全过程,提高他们运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。
6.通过数学的训练,可以使学生增强拼搏精神和应变能力,能通过不断分析矛盾,从表面上一团乱麻的困难局面中理出头绪,最终解决问题。
7.可以调动学生的探索精神和创造力,使他们更加灵活和主动,在改善所学的数学结论、改进证明的思路和方法、发现不同的数学领域或结论之间的内在联系、拓展数学知识的应用范围以及解决现实问题等方面,逐步显露出自己的聪明才智。
8.使学生具有某种数学上的直觉和想象力,包括几何直观能力,能够根据所面对的问题的本质或特点,八九不离十地估计到可能的结论,为实际的需要提供借鉴。
但是,通过数学训练使学生形成的这些素质,还只是一些固定的、僵化的、概念性的东西,仍然无助于学生对学习数学重要性及数学的重大指导意义的进一步认识,无助于素质教育的进一步实施。
“山重水复疑无路,柳暗花明又一村。”数学建模及数学实验课程的开设,数学建模竞赛活动的开展,通过发挥其独特的作用,无疑可以为实施素质教育作出重要的贡献。正如李大潜院士所说:“数学建模的教学及竞赛是实施素质教育的有效途径。”
第一,从学习数学建模的目的来看,学习数学建模能够使学达到以下几个方面:
1.体会数学的应用价值,培养数学的应用意识;
2.增强数学学习兴趣,学会团结合作,提高分析和解决问题的能力;
3.知道数学知识的发生过程,培养数学创造能力。
第二,从建立数学模型来看,对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。也可以说,数学建模是利用数学语言(符号、式子与图象)模拟现实的模型。把现实模型抽象、简化为某种数学结构是数学模型的基本特征。它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。
第三,从数学建模的模型方法来看,有如下几个方面:
1.应用性——学习有了目标;
2.假设——公理定义推理立足点;
3.建立模型——分层推理过程;
4.模型求解——matlab应用公式;
5.模型检验——matlab,数学实验。
第四,从数学建模的过程来看,有如下几个方面:
1.模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
2.模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3.模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
4.模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
5.模型分析:对所得的结果进行数学上的分析。
6.模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
7.模型应用:应用方式因问题的性质和建模的目的而异。
从以上数学建模的重要作用来看,数学建模对于实施素质教育有着重大的指导意义和主要的推动作用。反过来说,素质教育也对数学建模有着必然的依赖性。
第一,要充分体现素质教育的要求,数学的教学还不能和其他科学以及整个外部世界隔离开来,关起门来一个劲地在数学内部的概念、方法和理论中打圈子。这样做,不利于学生了解数学的概念、方法和理论的来龙去脉,不利于启发学生自觉地运用数学工具来解决各种各样的现实问
题,不利于提高学生的数学素养。长期以来,数学课程往往自成体系,处于自我封闭状态,而对于学数学的学生开设的物理、力学等课程,虽然十分必要,但效果并不理想,与数学远未有机地结合起来,未能起到相互促进、相得益彰的作用,更谈不上真正做到学用结合。可以说,长期以来一直没有找到一个有效的方式,将数学学习与丰富多彩、生动活泼的现实生活联系起来,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不会应用或无法应用,有些甚至还会觉得毫无用处。直到近年来强调了数学建模的重要性,开设了数学建模乃至数学实验的课程,并举办了数学建模竞赛以后,这方面的情况才开始有了好转,为数学与外部世界的联系在教学过程中打开了一个通道,提供了一种有效的方式,对提高学生的数学素质起了显著的效果。这是数学教学改革的一个成功的尝试,也是对素质教育的一个重要的贡献。
第二,数学科学在本质上是革命的,是不断创新、发展的,是与时俱进的,可是传统的数学教学过程与这种创新、发展的实际进程却不免背道而驰。从一些基本的概念或定义出发,以简练的方式合乎逻辑地推演出所要求的结论,固然可以使学生在较短的时间内按部就班地学到尽可能多的内容,并体会到一种丝丝入扣、天衣无缝的美感;但是,过分强调这一点,就可能使学生误认为数学这样完美无缺、无懈可击是与生俱来、天经地义的,反而使思想处于一种僵化状态,在生动活泼的现实世界面前手足无措、一筹莫展。其实,现在看来美不胜收的一些重要的数学理论和方法,在一开始往往是混乱粗糙、难以理解甚至不可思议的,但由于蕴涵着创造性的思想,却又最富有生命力和发展前途,经过许多乃至几代数学家的努力,有时甚至经过长期的激烈论争,才逐步去粗取精、去伪存真,使局势趋于明朗,最终出现了现在为大家公认、甚至写进教科书里的系统的理论。要培养学生的创新精神,提高学生的数学修养及素质,固然要教授他们以知识,但更要紧的是使他们了解数学的创造过程。这不仅要有机地结合数学内容的讲授,介绍数学的思想方法和发展历史,而且要创造一种环境,使同学身临其境地介入数学的发现或创造过程;否则,培养创新精神,加强素质教育,仍不免是一句空话。在数学教学过程中,要主动采取措施,鼓励并推动学生解决一些理论或实际的问题。这些问题没有现成的答案,没有固定的方法,没有指定的参考书,没有规定的数学工具,甚至也没有成型的数学问题,主要靠学生独立思考、反复钻研并相互切磋,去形成相应的数学问题,进而分析问题的特点,寻求解决问题的方法,得到有关的结论,并判断结论的对错与优劣。总之,让学生亲口尝一尝“梨子”的滋味,亲身去体验一下数学的创造过程,取得在课堂里和书本上无法代替的宝贵经验。毫无疑问,数学模型及数学实验的教学以及数学建模竞赛的开展,在这方面应该是一个有益的尝试和实践。
第三,从应用数学的发展趋势来说,应用数学正迅速地从传统的应用数学进入现代应用数学的阶段。现代应用数学的一个突出的标志是应用范围的空前扩展,从传统的力学、物理等领域扩展到生物、化学、经济、金融、信息、材料、环境、能源等各个学科和种种高科技乃至社会领域。传统应用数学领域的数学模型大都是清楚的,且已经是力学、物理等学科的重要内容,而很多新领域的规律仍不清楚,数学建模面临实质性的困难。因此,数学建模不仅凸现出其重要性,而且已成为现代应用数学的一个重要组成部分。学生接受数学建模的训练,和他们学习数学知识一样,对于今后用数学方法解决种种实际问题,是一个必要的训练和准备,这是他们成为社会需要的优秀人才必不可少的能力和素养。
第四,数学建模竞赛所提倡的团队精神,对于培养学生的合作意识,学会尊重他人,注意学习别人的长处,培养求同存异、取长补短、同舟共济、团结互助等集体主义的优秀品质都起到了不可忽略的作用。
总之,数学建模对于实施素质教育有着不可比拟的巨大推动作用,数学建模与素质教育二者之间存在的这种紧密联系,是靠我们这些从事数学工作者们挖掘的,但是必须更加清醒地认识到,这种联系是需要我们继续去挖掘和发现,需要我们持之以恒地去努力实践,紧密地依托数学建模,大力推进素质教育的实施,为培养新的人才作出持续、不懈的努力。
[参考文献]
[1]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004.
[2]杨徐昕,莫晓云.数学建模与素质教育[J].当代教育论坛(学科教育研究),2007,(3).
摘要:通过对数学建模的实践性和操作性的学习和运用,将抽象的数学素质教育具体化、形象化,从而达到对开展数学素质教育的重要性的再认识,为数学素质教育提供新的认识视角,为推动数学素质教育作出努力。
关键词:数学建模;素质教育