城市绿地覆盖率计算研究论文
时间:2022-09-29 05:58:00
导语:城市绿地覆盖率计算研究论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
【摘要】计算城市的绿地覆盖率是一项繁琐的工作。高分辨率影像的出现,给这项工作提供了便捷的途径。本文以高分辨率影像为基础,结合道路和水系矢量数据,利用ecognition分类软件完成绿地的提取,并计算出绿地覆盖率。
【关键词】绿地覆盖率高分辨率影像影像分类
1、引言
绿化建设是一个城市建设的重要工作,城市绿地覆盖率是衡量一个城市绿化程度的最主要的指标,那么如何来计算一个城市的绿地覆盖率呢?从方法上看,只要能够知道城市范围以及该范围内的绿地面积,绿地覆盖率的结果就可以非常简单地计算出来,问题的关键就在于绿地面积的获取。一般的作法是通过调查人员在实地调绘出绿地的范围,然后在地图上量算出绿地面积。由于计算的范围一般都会非常大,如果所有的绿地都是通过调绘来确定范围,那就需要花费大量的人力和时间,实际的工作中,通常是将城市划分为不同的区域,每个区域再取不同的样点,利用样点数据计算的绿地面积来推算一个区域的绿地面积,最后再推算出整个城市的绿地面积。
目前,随着航空遥感技术的发展,高分辨率遥感影像在国内开始得到广泛的应用,而这些影像的出现,也给城市绿地覆盖率计算提供了更为有效而便捷的手段。
2、主要思路
采用高分辨率影像来确定绿地范围,这项工作完全可以在室内完成,无需进行室外的调绘。需要注意的是,绿地覆盖率是一个跟时间密切关联的指标,绿地覆盖率应当是代表某个时间的计算的结果。由于植被的生长周期一般都比较长,绿地覆盖率突变的情况比较小,而完全采用影像来确定绿地,最直接的优点就是提高了计算结果在时间定位上的精度。
从高分辨率影像上提取绿地一般是采用人工提取,也就是作业人员在计算机上,以影像为底图,手工勾绘绿地范围,这种方式的工作量依然很大。本文采用的作法是通过ecognition影像分类软件来完成绿地的提取。ecognition是2004年引入国内的一个影像分类软件,它采用面向对象的分类方法。该软件能方便地融入其他专题地影像信息作为分类知识,同时能够让用户灵活地建立基于知识的分类模型,简洁高效地完成分类工作。
只单纯采用高分辨率的影像,利用软件来自动提取绿地的效果并不理想,本文的作法还引入了城市的路网和水系数据作为专题信息,用来提高绿地提取的精度。
另外,考虑到城市的范围比较大,并且不同区域的地类分布会有所不同,因此需要将城市划分为不同的区域,每个区域分别进行绿地的提取,最后再汇总计算出总的绿地面积。整个计算的过程如图1所示。
1计算过程
Fig.1CalculationProcess
3、过程及方法描述
3.1数据准备
3.1.1数据情况
本篇文章所处理的主要数据为高分辨率影像,同时还利用了矢量的GIS数据,具体如下:
广西南宁市QUICKBIRD影像,2002年10月份获取,真彩色产品,包括红、绿、兰三个波段,tiff格式,空间分辨率0.61米。
城市路网和水系的矢量文件,ArcInfo的shape格式文件(如图2)。
图2矢量数据
Fig.2VectorData
本文需要计算图1中所示的外环公路内绿地覆盖率。
3.1.2区域划分
城市区域的划分主要是根据路网、水系、地势等地理要素,在矢量地图上,通过手工来划分,实验区域的划分情况如图3,将外环公路内分为C1、C2、C3、C4、C5、C6、C7等7个区域。
图3工作区域
Fig.3WorkRegions
3.1.3影像配准及数据转换
由于混合了矢量数据和影像数据的处理,为正确和方便地使用这些数据,需要统一数据的地理坐标,为此,采取将影像数据配准到矢量数据的地理坐标下的作法,影像需要根据输入的控制点,进行移动、缩放、旋转等内容的变换,并且不要对影像进行重新的采样和保存。因为需要将整个范围划分为6个区域来处理,影像数据也相应地要分割为6个部分,但影像的分割,不需要用区域的边界来分割,只要用区域的最小外接矩形来分割就可以了,在分类的过程中,利用区域的专题信息,就可以避免数据处理过程中对影像重叠部分的重复计算。
Ecognition的专题图文件是由一个栅格数据文件和一个描述栅格属性的ASCⅡ文件来组成,描述文件的后缀一般为asc,也可以是txt后缀,下面是一个asc文件的样例。
表1asc文件格式
Tab.1ascFileFormat
ID列表示栅格文件中的灰度值,R、G、B表示该灰度值在ecognition软件中显示时所使用的RGB色彩的三个分量,Value、Field1都是扩展的属性字段,用来记录更多的特征。
矢量数据中,需要将划分的区域面以及道路和水系的面数据转换为ecognition软件的专题数据文件格式,这项工作,作者是通过编写专门的程序来实现(具体作法可参考矢量数据转换为栅格数据的相关资料和文献)。
3.2绿地提取
绿地的提取,主要是在ecognition软件中来完成。
3.2.1建立工程
首先,需要建立一个新的影像分类工程。一个工程包括需要处理的多个影像数据和专题数据,以及分类的描述信息。这项工作需要注意一点,ecognition软件主要是基于栅格数据的分析和处理,所有的影像文件和专题文件都应当具有相同的大小,这样才能够有效地共同完成分类的推理工作。
本文实验中的数据包括quickbird影像三个波段数据,分割区域、道路和水系专题图数据。
3.2.2影像分割
这步工作,是根据影像的光谱和几何特征,将影像划分为不同的对象(imageobject),ecognition支持多尺度的分割,“粗”的尺度下,可以分割获得比较“大”的对象,“细”的尺度是在上一个“粗”尺度的基础上分割出的“小”对象,因此,在ecognition中,可以建立对象的层次关系,并且可以针对不同的层来进行分类。
实验中建立3个层次的分割面对象,如图。
图4影像分割
Fig.4ImageSegmentation
最“粗”的是划分的工作区域范围(level3),然后是以道路和水系的范围做约束的分割面(level2),最后是根据光谱和专题图的“精细”分割(level1)。
3.2.3分类体系的建立及特征分析
分类的目标是提取绿地,绿地的范围和信息主要是从level3上来获取,但是专题数据中包含的一些信息对绿地提取非常有用,比如,在level2中,已经明确为道路和水系的部分,就不需要进行分类的判别了,所有在level3上,先划分为:主干水体、道路、非水体和主干道路三种类别。在“非主要道路和水体”的类别当中再细分为房屋、树木、草地、阴影、街道等,如图。
图5影像分类
Fig.5ImageClasses
“草地”在红色波段,灰度值主要集中在绿色波段。对于同物异谱的情况,可以通过增加更细致的分类来处理,例如房屋类别可以用房屋1、房屋2等类别来替代,每个类别的光谱特性分别描述。实验中各种类别的光谱特征描述如表。
类别RGB类别RGB
草地110~127121~133120~132街道1148~158160~174170~180
房屋1116~126102~116108~118街道2135~150136~148138~148
房屋2108~118100~112108~120阴影33~4556~7280~92
房屋3168~180160~174160~170
3.2.4获取分类结果
Ecognition采用模糊分类的机制,通过对特征的描述,计算不同对象隶属各个分类的隶属度,最后完成分类的过程。实验的结果如图6所示(局部)。
图6分类结果
Fig.6ClassificationResult
其中绿地的面积包括“树木”和“绿地”这两种类别的面积。
3.3成果计算
计算采用象素数量来反映分类的面积。在分类完成后,通过各个区域分类面积的汇总,可以获得主干道路面积、草地面积、树木面积、房屋面积、街道面积、阴影面积。
其中树木面积和房屋面积可以算做绿地面积,而阴影面积,可以认为它包含了其他分类的面积。设绿地面积为,则有
城市计算范围的面积,设为绿地覆盖率,于是有
4、小结
计算城市绿地覆盖率的工作,从方法上看并不复杂,但是作为一项具体的工作却并不简单。传统的作法需要花费大量的人力和时间,本篇文章采用高分辨率影像作为数据基础,通过分类软件来进行绿地提取,可以大量减少人工劳动,极大提高工作效率。但是在目前,利用软件对高分辨率影像进行分类,要获得好的分类效果还比较困难,本篇文章所要计算的绿地覆盖率,对精度的要求并不高,同时,通过引进GIS数据参与分类,提高了分类的精度,另外,在执行完分类的过程后,还可以通过人工的检查,手工修正一些不正确的分类结果,但这些劳动,相比较过去的作法,已经变得相当轻松。总之,采用高分辨率影像作为数据,利用影像分类软件作为绿地提取的工具,给绿地覆盖率的计算提供了便捷的方法,而随着影像数据获取的质量提高以及分类软件性能的不断完善,这样的方法将会显得愈发的简洁和优越。
参考文献
[1]梅安心、彭望录等,《遥感导论》,高等教育出版社2001年7月第一版
[2]钟仕全、石剑龙,《高分辨率卫星图像数据处理方法及其应用》,2004年全区遥感协会论文集
[3]/.北京视宝卫星图像有限公司
- 上一篇:二级调压器选型研究论文
- 下一篇:城市绿地覆盖率计算研究论文