数学发散性思维培养

时间:2022-03-07 03:21:00

导语:数学发散性思维培养一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

数学发散性思维培养

一、在求异中培养发散思维

赞可夫说过:“凡是没有发自内心求知欲和兴趣和东西,是很容易从记忆中挥发掉的。”发散性思维的形成是以乐于求异的心理倾向作为一种重要的内驱力。教师要善于选择具体题例,创设问题情境,例如:一条水渠,甲单独修要8天完成,乙单独修要6天完成,现在甲先修了4天,剩下的让乙修。乙还要几天可以完成?学生都能按照常规思路作出(1-1/8×4)÷1/6解答,教师要求用别的方法解答,学生一时想不出,通过教师的引导学生得出了:6×(1-1/8×4),6-1/8×4÷1/6,教师精细地诱导他们的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时给予肯定和热情表扬,并记上优分以资鼓励使学生真切体验到自己求异成果的价值,反馈出更大程度的求异积极性,对于学生欲寻异解而不能时,则要细心点拨。潜心诱导,帮助他们获得成功,让他们在对于问题的多解的艰苦追求并且获得成功中,备享思维发散这一创造性思维活动的乐趣,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从××角度分析一下!”的求异思考。

二、在变通中培养发散思维

变通,是发散思维的显著标志。要对问题实行变通,只有在摆脱习惯性思考方式的束缚,不受固定模式的制约以后才能实现,因此,在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面考虑问题,实行变通。当学生思路闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,产生多种解决问题的设想。

三、在独创中培养发散思维

在分析和解决问题的过程中,学生能别出心裁地提出新异的想法和解法,这是思维独创的表现。尽管小学生的独创从总体上看是处于低层次的,但它蕴育着未来的大发明、大创造,教师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见和质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。

四、培养发散思维要加强基础

首先,要加强基础知识的教学和基本技能的训练。学生掌握的每一项知识、技能不仅必须准确无误和具有良好的巩固程度,而且要理解知识间的纵横联系,把握形式与实际的关系如果在基础上有这样那样缺陷,当思维向各方发散时便会时时受阻,处处遇卡。其次,要帮助学生掌握一些解决问题的思想方法和数学方法,如对应、还原、假设、转化、等量代换、列举、化归等,这增,他们遇到具体问题才能作出多种途径的探索。