定积分微元法研究论文

时间:2022-08-28 08:33:00

导语:定积分微元法研究论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

定积分微元法研究论文

【论文关键词】定积分微元法

【论文摘要】微积分是与应用联系发展起来的,它是数学的一个重要的分支,其应用与发展已广泛的渗透到了物理学,化学,经济学等各个自然科学之中,是我们学习各门学科的重要工具。

微积分学是微分学和积分学的统称,它的创立,被誉为“人类精神的最高胜利”。在数学史上,它的发展为现代数学做出了不朽的功绩。恩格斯曾经指出:微积分是变量数学最重要的部分,是数学的一个重要的分支,它实现带科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具。凡是复杂图形的研究,化学反映过程的分析,物理方面的应用,以及弹道﹑气象的计算,人造卫星轨迹的计算,运动状态的分析等等,都要用得到微积分。正是由于微积分的广泛的应用,才使得我们人类在数学﹑科学技术﹑经济等方面得到了长足的发展,解决了许多的困难。以下将讲述一下定积分在计算图行面积和体积,初等数学中的一些应用。

一、在计算图形面积和立体图形体积上的应用

在学习和生活中,我们常常会遇到一些计算图形面积和体积的问题,而且这些图形大多是无规则的,对这些图形的计算,如果用我们中学的计算面积和体积的数学公式是无法解决,因为中学所学的这些公式都是对比较规则图形实用。但是我们应用了定积分,这样的问题就可迎韧而解。

1.计算平面图形的面积

例1.求抛物线y=x2与直线x+y=2所围的平面图形的面积。

分析:根据题目,我以在坐标系们可中画出y=x2和x+y=2所围的图形,即(图一)其中阴影部分就是所要求的平面图形的面积。

解:由于抛物线y=x2与直线x+y=2在A(-2,4)及B(1,1)相交,

所以S=f(x)dx,其中f(x)=(2﹣x)﹣x2(-2≤x≤1),于是有

S=[(2-x)-x2]dx=(2x--)]1-2=9/2

2.求立体图形的体积

用类似求图形面积的思想,我们也可以求一个立体图形的体积,例如求一个木块的体积,我们可以利用微元法,把木块划分成n份小块,其每一小块的体积厚度为△xi,假设每一小块的横截面积为A(x)i则此小块的体积大约为A(xi)△xi,从而将其所有的小块相加,我们可以得到其体积为V≈A(xi)△xi,并且当其厚度△xi趋于零时,由定积分定义有V=A(x)dx(其中a与b分别为计算体积时的起始值和终了值)。对于旋转体的体积,由于其平面截得旋转体的截面是一个圆,则设曲线y=f(x),其截面面积为A(x)=?仔[f(x)]2。于是,所求体积为V=A(x)dx=?仔[f(x)]2dx。

例2.一块由直线y=a和直线x=3a及弧y2=ax,(a>0a≤x≤3a)所共围成的区域,以x轴为轴旋转一周所形成的体积是多少?

分析:(图二)斜线区域即为题意所指的区域,其旋转积求法,可将区域ABQD的旋转体积减去区域ABCD的旋转体积,即为所求。

解:首先来求区域ABQD的旋转体积:

V1=?仔?琢xdx=?仔?琢|=4?仔?琢3

而区域ABCD的旋转体积为一个其半径为a,高为2a的圆柱体,则V2=?仔?琢2•;2?琢=2?仔?琢3

∴区域CDQ的旋转体积为:V=V1-V2=4?仔?琢3-2?仔?琢3=2?仔?琢3

二、在初等数学中的应用

近些年来,定积分还越来越多的被应用到初等数学中的一些问题上面来,下面就来讨论一下定积分在证明不等式,等式和一些数列的极限方面的应用。

1.证明不等式和等式

在运用积分来证明不等式时,一般要利用到积分的如下性质:设f(x)与g(x)为定义在[a,b]上的两个可积函数,若f(x)≤g(x),x∈[a,b],则有:f(x)dx≤g(x)dx.

例3.设n∈N,求证:1n(n+1)<1++……+<1+1nn

证明:设是i任意一自然数,则有:

dx=1n|=1n-1n=1n-1n

在区间(,)上显然有i<=idx从而得:1n-1n<………(1)

<1n-1n…………(2)

由(1)式得:[1n-1n]<,所以有1n<

由(2)式得:=1+<1+[1n-1n]=1+1n

于是,综上所述:1n<1++……+<1+1n

以上是应用定积分的性质证明不等式,下面再看关于等式的证明。(注意:在运用定积分证明等式时,要根据等式的特点,作辅助函数,然后再直接积分从而证明等式。)

例4.证明:c+++……+=

证明:设f(x)=c+cx+……+cx=(1+x)n

∵f(x)dx=cx+x2+……+x

同时又有:(1+x)ndx=

∴cx+x2+……+x=

∴当x=1时,可得:c+++……+=

此外,定积分还可用来求和式,根据微分与积分互为逆运算的关系,先对和式积分,利用已知数列的和式得到积分和,再求导数即可,这里就不在介绍了。

2.求数列和的极限

在实际的学习中,我们会发现在计算一些数列和的极限时,可以利用定积分的计算法来求某些可以看成是积分和式的数列极限,这样,我们可得出一种求极限的新方法:若f(x)在[a,b]上连续,将[a,b]等分为几个小区间,△x=记分点为:?琢=x0于是:f(x0+i△x)△x=f(x)dx,并且有些数列的一般项?琢n总可以设法写成?琢n=f(x0+i△x)△x,因此,有些数列的极限问题,则可以转化为定积分的计算问题。

例5.求:(++……+)

解:原式=(++……+)•;=•;

取f(x)=且在[0,1]上连续,将[0,1]分成n个小区间,则有△x=,分点为:0<<<……<<=1,于是有:f(x0+i△x)△x=•;,由定积分的存在定理有:原式=•;=dx=1n(1+x)|=1n2。

总而言之,微积分是与应用联系发展起来的。微积分的应用推动了数学的发展,同时也极大的推动了天

文学,物理学,化学,工程学,经济学等自然科学,社会科学及应用科学各个分支中的发展,而且随着人类认识的不断发展,微积分正指引着人类走向认知的殿堂。

参考文献:

[1].华东师范大学数学系.数学分析[M].北京:高等出版社,1987.

[2].刘书田,冯翠莲.微积分[M].北京:高等教育出版社,2003.