中等职业学校数学教学研究
时间:2022-10-29 11:05:00
导语:中等职业学校数学教学研究一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要本文叙述了中等职业技术学校数学课堂教学的一些体会,内容包括三个专题:1、一元二次不等式;2、函数的单调性;3、函数的奇偶性。都是笔者在教学工作中的真切感受,想和广大读者作一个交流。
关键词中职学校数学教学实际体会
目前普通中等职业技术学校都是从初中毕业生中招收新生,经过三年的学习和实践,要求学生既具有一定的文化知识,又能在某一方面有实际专长,以适应毕业以后的就业和发展的需要。因此,文化基础课是以够用为原则。数学课的情况也是如此,对于一些偏难、偏深的推导、证明等适当简化,重点是讲解一些通俗易懂的例题,课外练习题、复习、测验或考试也是按照这一原则,题目一般与基本概念相联系,不出太难、太偏的题目。测验或考试的题目与例题、课外练习题、复习题的难度基本上是一样的。学生经过上课、做练习、复习、测验或考试,能够掌握最基本的概念和理论,为将来学好专业课打下必要的基础。现在,准备就上述想法分三个专题谈一些体会。
一、一元二次不等式
一元二次不等式的解法是在学习不等式的解法时学生感到较难的一个内容。当明确了一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a≠0)之后,如果判别式⊿=b2-4ac>0,或⊿=b2-4ac=0,则可以采用因式分解的方法解题;也可以运用二次函数y=ax2+bx+c(a≠0)的图象,即抛物线,来解题.如果判别式⊿=b2-4ac<0,则不能采用因式分解的方法,只能考虑作出二次函数y=ax2+bx+c(a≠0)的图象,即抛物线,由图象判断一元二次不等式的解集。现在有的教材已经删掉了这一部分内容,没有再论述⊿>0或⊿=0时,一元二次不等式有两种不同的解法。一般就是讲了一元二次不等式的一般形式后,直接给出一元二次不等式的例题,这些一元二次不等式,判别式⊿都是大于或等于零的,因此都可以运用因式分解的方法来求解。能不能在讲有关一元二次不等式的例题之前,先向学生介绍,⊿>0或⊿=0时,解一元二次不等式,既可以采用因式分解的方法,也可以采用二次函数的图象解法;⊿<0时,不能采用因式分解法,只能采用二次函数的图象解法。如果课时有限,可以不再推导这些结论,只作介绍,起码让学生有一个了解,正所谓“开卷有益”。如果课时较多的话,就可以向学生推导和证明这些结论。现给出初步推导,以供参考:初中学过当判别式⊿>0或⊿=0时,ax2+bx+c=a(x-x1?)(x-x2),∴⊿>0或⊿=0时,ax2+bx+c是可以因式分解的,其中x1?、x2是一元二次方程ax2+bx+c=0的两个实数根。⊿>0时,方程有两个不相等的实数根。⊿=0时,方程有重根,即只有一个实数根。⊿<0时,方程没有实数根,因此ax2+bx+c不能因式分解。
现举一例:解一元二次不等式3-2x-x2≥0,解化成一般形式x2+2x-3≤0,判别式⊿=b2-4ac=22-4×1×(-3)=16>0,因此,可采用因式分解的方法。分解因式,得(x-1)(x+3)≤0,解这个不等式,得原不等式的解集是:[-3,1]。
再举一例:解一元二次不等式3x2-x+1<0,解⊿=b2-4ac=(-1)2-4×3×1=-11<0,因此原不等式不能采用因式分解法,需要设二次函数y=3x2-x+1,作这个函数的图象,通过观察图象,判断原不等式的解集。讲完二次函数的图象和性质这一部分内容后,可以采用二次函数的图象解法。现在顺便解完这道例题,供参考:∵a=3>0,∴抛物线开口向上。∵,==,∴顶点坐标是(,),顶点在第一象限,由此可作出抛物线的草图,草图与x轴无交点。一元二次不等式3x2-x+1<0,相当于在二次函数y=3x2-x+1中,要求y<0,由抛物线的草图可知,x∈R时,y>0,y不可能小于0,∴一元二次不等式3x2-x+1<0无解,即解集为空集。
2、函数的单调性
函数的单调性指的是函数y=f(x),x∈D,当自变量在定义域D内由小到大增长时,函数y随自变量x变化的情况。即y是增大,还是减小。有时y还可以保持不变,当然这种情况在中职教材中较少提到。在讲述这一部分内容前,可以先讲一些实际例子。比如随着时间的增加,人的年龄也随着增加。再比如行驶中的汽车,随着行驶距离的增加,汽车的储油量反而减少。通过举这些例子,可以减小学习的难度,也显得比较直观。
在讲函数的单调性时,一般都是先从数量关系上给出增函数和减函数的定义。即对于函数y=f(x),x∈D,如果自变量x在给定区间上增大时,函数y也随着增大(或者函数y反而减小),即对于属于该区间内的任意两个不相等的x1和x2,当x1<x2时,都有f(x1)<f(x2)(或者都有f(x1)>f(x2)),则称y=f(x)在这个给定区间上是增函数(或者是减函数)。这个给定区间,对于有的函数可能是整个定义域D;对于有的函数,可能只是定义域D的一部分。如果一个函数y=f(x),在某个给定区间上是增函数或者是减函数,我们就说这个函数在该区间上是单调函数,这个给定区间称为函数的单调区间。需要向学生强调的是,这个给定区间,指的是自变量x在定义域D内的某一部分区间,也可能是整个定义域D。不是指函数y在值域M内的区间。
现举一例:判断一次函数f(x)=-2x+1在区间(-∞,+∞)上是增函数还是减函数?经过解题,一次函数f(x)=-2x+1在区间(-∞,+∞)上是减函数。因为一次函数的图象是直线,所以可以只描两点做出f(x)=-2x+1的图象,沿着x轴的正向,减函数的图象是下降的,这是减函数的图象共有的特点,一次函数f(x)=kx+b,正比例函数f(x)=kx,k<0时,都将沿着直线下降,比如本题,k=-2<0,直线是下降的。有的函数在给定区间内,可能会沿着曲线下降。
再举一例:判断二次函数f(x)=x2在区间(0,+∞)上是增函数还是减函数?经过解题,二次函数f(x)=x2在区间(0,+∞)上是增函数,可做出函数的草图,沿着x轴的正向,减函数的图象是上升的,这是增函数的图象共有的特点,一次函数f(x)=kx+b,正比例函数f(x)=kx,k>0时,都将沿着直线上升。有的函数在给定区间内,可能会沿着曲线上升。比如本题,二次函数f(x)=x2在区间(0,+∞)上是增函数,图象沿着曲线上升。但如果把区间换成(-∞,0),f(x)=x2的图象将沿着曲线下降。这说明对于函数f(x)=x2,x∈(-∞,+∞),在区间(-∞,0)上是减函数,在区间(0,+∞)上是增函数,函数在定义域D内有时是减函数,有时是增函数,函数的图象,有时下降,有时上升。有的函数,顺序也可以相反。但有的函数,象一次函数f(x)=kx+b,反比例函数f(x)=,等等,在各自的定义域内,全部都是增函数,或者全部都是减函数。这些情况可以向学生简单讲解,让他们了解这些情况。
3、函数的奇偶性
函数的奇偶性是除单调性以外函数的另一个重要特性。有的教材举了一些实际例子,如汽车的车前灯,音响中的音箱,汉字中如“双”、“林”等对称形式的字体等,这些都给人以对称的感觉。这样,使偶函数的概念显得比较直观、易懂。然后定义什么叫偶函数?什么叫奇函数?对于奇、偶函数的讲解,一般先从数量关系上定义奇、偶函数,即:如果对于函数f(x)的定义域D内的任意一个x,①都有f(-x)=f(x),则称这个函数为偶函数。②都有f(-x)=-f(x),则称这个函数为奇函数。然后通过解答例题,论述奇、偶函数的图象的特点,即偶函数的图象是以y轴为对称轴的轴对称图形,奇函数的图象是以坐标原点为对称中心的中心对称图形,。上述内容是从数和形两个方面把握偶函数和奇函数的特征。另外,一个函数能成为偶函数或奇函数,有一个先决条件,那就是函数的定义域是关于原点对称的区间,即形如(-a,a)或[-a,a],如果不能满足这个条件,则函数无奇偶性可言,肯定是非奇非偶的第三类函数。如果函数的定义域是上述两种区间的形式之一,也不能肯定就是奇函数,或者是偶函数,还需要满足上述奇、偶函数的定义,才能是奇函数,或者是偶函数。例如要判断f(x)=x2+x是不是奇函数?首先明确定义域D=(-∞,+∞),关于坐标原点左右对称,f(-x)=(-x)2+(-x)=x2-x,-f(x)=-x2-x,∴f(-x)≠-f(x),∴f(x)=x2+x不是奇函数。同时,可以向学生补充:本题另有f(-x)≠f(x),∴f(x)=x2+x也不是偶函数。∴f(x)=x2+x是非奇非偶的第三类函数。现在有的教材不再提“非奇非偶函数”,建议在解答例题时顺便说一说非奇非偶函数的概念,让学生了解这方面的知识。
另外,需要补充说明的是,有的函数,定义域D虽然不是(-a,a)或[-a,a]这两种形式之一,但定义域D只要关于坐标原点对称,仍然有可能成为奇函数,或者是偶函数。例如要判断函数f(x)=是不是奇函数?先求出这个函数的定义域是(-∞,0)∪(0,+∞),并不是(-a,a)或[-a,a]两种形式之一,但定义域仍然关于坐标原点对称,所以仍然有可能是奇函数,或者是偶函数。继续演算f(-x)==-=-f(x),∴f(x)=是奇函数。这道例题的情况也可以向学生补充说明,让他们增加这方面的知识。
以上分三个专题讨论了笔者在数学教学工作中的一些体会。请各位提出批意见,以便在以后的教学工作中不断改进、不断提高,以适应新形势发展的需要。
参考文献
1.涂焜耀,何声威,等广东省中等职业技术学校.文化基础课课程改革实验教材.第二版.数学.广东高等出版社,2006
- 上一篇:中学数学教学与计算机整合思考
- 下一篇:新课程小学数学教学研究
精品范文
10中等生评语