高层建筑优化设计管理论文
时间:2022-07-07 10:15:00
导语:高层建筑优化设计管理论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要:。通过将外围框筒结构改为框撑结构,与内筒构成框撑-核心筒结构体系,经过计算分析,该结构体系可取得较好的抗侧刚度,能满足现行规范的要求,并能节约混凝土用量约7000m3,增加建筑使用面积约2000m2。这种结构体系具有减轻自重、提高刚度、扩大建筑空间的优点,是超限高层建筑结构比较经济、合理、可行的一种结构体系。
关键词:框撑-核心筒结构超限高层受力性能刚度
1工程概况[1]
本工程位于重庆市渝中区的中心地带,建筑面积约100000m2,由7层裙楼及56层塔楼组成,裙房平面尺寸为81m×54m,塔楼平面尺寸为34m×34m(外包尺寸为37.6m×37.6m),将地下二层按规范要求的嵌固构造处理,使其作为上部的嵌固端,嵌固以下埋深11.9m,以上229.3m(结构计算高度)。建筑总高度为241.2m(未包括出屋面的电梯,观景厅及水箱间的高度),核心筒平面尺寸14.6m×14.6m。该结构平面布置规则、对称,竖向抗侧力构件上下连续贯通、无刚度突变(见图1、2)。
该项目地下部分及塔楼筏板基础建成后停工至今已达三年之久,被市列为“四久工程”。
2结构优化
2004年7月业主委托我院对该项目进行方案优化设计,要求方案满足建筑扩大空间、结构安全、经济合理并符合超限高层建筑抗震规范要求。对原设计单位所作的结构设计方案,我院提出以下优化意见。
①减少外围框架柱数量,增大建筑空间
为满足建筑大空间的功能要求,将原设计方案中每边八根柱减少到每边五根柱,底层柱截面由原设计的1500mm×1500mm、1400mm×1500mm增大为1800mm×1800mm、1700mm×1700mm,上部各层柱分段减小,以满足轴压比的要求。优化后可以增加建筑使用面积约750m2,并节约混凝土用量约2700m3。为了弥补结构抗侧刚度的不足,在塔楼四角区设置“L”型桁架(见图3),构成框架桁架结构,内部布置剪力墙核心筒,形成框撑-核心筒体系。并且在建筑上将四周的支撑暴露,造型美观,具有独特的标志性风格。
图1结构平面示意图图2建筑轴侧图
②减小核心筒内墙墙体厚度
经过计算分析,芯筒内的内墙对抗侧刚度贡献较小,主要承受的竖向荷载是墙体本身的重量,因此可以将内墙厚度适当减薄。原设计方案芯筒内墙厚度为800、400、350、250mm,优化设计后改为400、250、200mm。同时将原设计中芯筒外墙厚度也减少100mm,由此可以节约混凝土用量约4500m3,增加建筑使用面积约1250m2。
③其他
在满足结构安全的情况下,将原设计方案中窗群梁由500mm×1500mm优化为500mm×700mm,塔楼井字梁由250mm×450mm优化为200mm×400mm。
3结构整体分析
3.1设计基本参数
①设计基准期50年,使用年限100年,安全等级为一级,地基设计等级为甲级。
②本工程抗震设防烈度为6度,地震分组为第一组,设计基本地震加速度为0.05g,建筑抗震设防类别为两类。由于本工程特别重要,现将建筑设防类别提高为乙类。由于本工程建筑场地为I类场地,仍按本地区抗震设防烈度的要求采取抗震构造措施。该工程为B级高度建筑,其结构抗震等级剪力墙和框架柱均为二级。
③场地的特征周期,水平地震影响系数最大值,放大系数。
④基本风压为0.45kN/m2,基本风压增大系数取1.2,即按0.54kN/m2取用。地面粗糙为C类,风压体形系数、风压高度变化系数及风振系数均按《建筑结构荷载规范》GB50009-2001的规定采用,楼面活荷载标准值按荷载规范取值。
3.2主要结构构件截面
表1核心筒剪力墙尺寸
楼层
心筒外墙厚
心筒内墙厚
-2F~4F
800
400/250/200
5F~21F
700
400/250/200
22F~32F
600
350/250/200
33F~40F
500
350/250/200
41F~53F
400
300/200
53F以上
400
300/200
表2框架柱截面尺寸
楼层
角柱
中柱
框架主梁
-2F~4F
1800×1800
1700×1700
500×700
5F~22F
1800×1800
1700×1600
500×700
23F~31F
1700×1700
1700×1400
500×700
32F~39F
1600×1600
1700×1200
500×700
40F~52F
1400×1400
1700×1000
500×700
52F以上
1200×1200
1700×800
500×700
表3混凝土强度等级
楼层
核心筒墙
框架柱
梁、板
-2F~24F
C60
C60
C30
25F~33F
C50
C50
C30
34F~42F
C40
C40
C30
42F以上
C30
C30
C30
3.3计算模型与程序
根据本工程结果的特殊性,结构整体分析采用SATWE和TAT两种软件分析计算。为了优化结构设计,并充分利用已经施工完成的基础,根据专家组的建议,分别对六柱方案、五柱方案和四柱方案三种框撑-核心筒体系进行计算分析。综合分析以上三种方案,专家组一致推荐第二方案,即五柱方案。
3.4主要计算结果
①五柱方案
表4~表6为SATWE和TAT主要计算结果的对比分析。应说明的是,采用SATWE程序计算,可将楼板按弹性楼板考虑,消除了复杂结构体系按刚性楼板假定计算带来的误差。
(a)平面图(b)立面图
图3五柱方案
表4模态分析计算结果
分析软件
SATWE
TAT
备注
结构总质量(t)
147815.625
146626.9
第1周期(s)
5.6758
5.8466
第2周期(s)
5.5607
5.7573
第3周期(s)
2.3090
2.5085
<0.8T1
第4周期(s)
1.4015
1.4830
第5周期(s)
1.3840
1.4739
第6周期(s)
0.8100
0.8773
第7周期(s)
0.6542
0.6842
第8周期(s)
0.6194
0.6466
第9周期(s)
0.4535
0.4717
注:表中只列出了前9个周期。
表5抗风计算结果
分析软件
SATWE
TAT
备注
x向最大层间位移
1/1163
1/1033
满足规范要求
y向最大层间位移
1/1127
1/1012
满足规范要求
x向顶点位移
163.25
181.97
满足规范要求
y向顶点位移
170.03
185.73
满足规范要求
x向总剪力(kN)
12813.6
12999.04
y向总剪力
12796.3
12982.13
x向总倾覆力矩(kN·m)
1860922
1896806.4
y向总倾覆力矩(kN·m)
1860582
1896478.6
表6抗震计算结果
分析软件
SATWE
TAT
备注
x向最大层间位移
1/1836
1/1969
满足规范要求
y向最大层间位移
1/1804
1/1968
满足规范要求
x向顶点位移
102.01
90.62
满足规范要求
y向顶点位移
105.01
91.26
满足规范要求
x向总剪力(kN)
8410.2
11730.15
y向总剪力
8491.4
11730.15
x向总倾覆力矩(kN·m)
1124786
1565804.38
y向总倾覆力矩(kN·m)
1112582
1536540.25
考虑第I振型,并忽略阻尼的有利影响,计算出结构顶点顺风和横风最大加速度:,,均满足高规规定的小于0.15m/s2的要求。
②六柱方案
最大轴压比0.66
结构顶层最大加速度:,。
内筒尺寸不变,外框架柱底层面积率为原设计方案(“筒中筒”方案)的71.4%。
(a)平面图(b)立面图
图4六柱方案
③四柱方案
(a)平面图(b)立面图
图5四柱方案
最大轴压比0.69
结构顶层最大加速度:,
内筒尺寸不变,外框架柱底层面积率为原设计方案(“筒中筒”方案)的76.0%,需设置三个加强层。
④计算结果对比分析
表7计算结果对比分析表
T
Δ/h
备注
筒中筒体系
6.2951
1/817
0.75
原设计方案
框撑-核心筒结构体系
六柱方案
5.4618
1/1433
0.66
0.05890
四柱方案
5.7756
1/1237
0.69
0.13840
有加强层
五柱方案
5.6758
1/1127
0.65
0.09270
- 上一篇:党员践行科学发展观典型事迹材料
- 下一篇:环境保护行政主管部门政务公开制度