枢纽楼消防设计管理论文
时间:2022-07-06 03:30:00
导语:枢纽楼消防设计管理论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要:本论文对当前市场上最常用的几种哈龙替代物进行了比较分析,根据工程的特点及XXX片区枢纽楼(简称:业主)出于成本的考虑,综合分析后为业主设计了一套七氟丙烷灭火系统。介绍了七氟丙烷灭火系统的组成及原理。针对XXX片区枢纽楼进行了七氟丙烷灭火系统设计及设计计算,火灾自动报警及联动控制系统设计及设计计算,安全疏散讨论、施工图纸设计和设计经济预算。
关键词:七氟丙烷灭火系统火灾自动报警系统安全疏散设计预算设计图纸
1.前言
哈龙灭火系统自问世以来,由于在灭火方面具有浓度低、灭火效率高、不导电等优异性能,在世界各地获得了广泛的应用。其主要应用于大型电子计算机房、通讯机房、高低压配电室、档案馆等重要场所。然而,大量的科学实验证明哈龙对大气臭氧层有破坏作用,有碍人类的生存环境。为保护人类健康及赖以生存的地球环境,联合国制定了《关于消耗臭氧层物质的蒙特利尔议定书》,发达国家自1994年1月1日,停止生产和使用哈龙灭火剂,发展中国家则可延长到2010年。于是寻找新的灭火剂替代哈龙成为必然。目前哈龙灭火剂的替代物主要有两大方向:一是以其他灭火系统替代哈龙灭火系统,如二氧化碳、细水雾等灭火系统。二是新型的“洁净气体”灭火剂和相应的灭火系统,如卤代烃灭火系统、惰性气体灭火系统。在各种洁净灭火剂中,具有实际应用价值的是七氟丙烷和烟烙尽。
下面就二氧化碳灭火系统、烟烙尽灭火系统和七氟丙烷灭火系统,对其灭火效率、系统投资、保护生命等方面进行比较分析。并说明XXX片区枢纽楼的最佳气体灭火系统的选择是七氟丙烷灭火系统。
二氧化碳灭火系统和烟烙尽灭火系统都是使氧气浓度下降,对燃烧产生窒息作用,从而扑灭火灾的。七氟丙烷在火灾中有抑制燃烧过程基本化学反应的能力,其分解物能够中断燃烧过程中化学连锁反应的链传递,因而灭火能力强,灭火速度快。由此可见,二氧化碳灭火系统、烟烙尽灭火系统和七氟丙烷灭火系统是两种不同的灭火机理,这两种不同的灭火机理决定了七氟丙烷灭火系统在设计浓度上要远远低于二氧化碳灭火系统和烟烙尽灭火系统。三种灭火系统的最小设计浓度7%、34%、37.5%。所以七氟丙烷的灭火效率是最高的,市场上经常使用的气体灭火剂综合性能如表1.1所示。
气体灭火剂综合性能对照表表1.1
灭火剂名称
FM-200
(七氟丙烷)
CO2
(高压)
INERGEN
(烟烙尽)
HALON
(哈龙)
生产厂家
美国大湖公司
国产
美国安素
国产
适用范围
同1301,但由于惰性大,高度和气瓶间距离均受一定限制
与`1301同,适用于无人区域
与1301同,但保护面积不可超过1000米2
A、B、C类及电气火灾,通常适用于无人区域
灭火方式
化学与物理
物理
物理
化学
设计浓度
8-10%
34-75%
37.5-42.8%
5-9.4%
灭火速度
快
最慢
慢
最快
贮存压力
2.5/4.2Mpa
5.8MPa
15Mpa
2.5/4.2Mpa
工作压力
2.5/4.2Mpa
15Mpa
15Mpa
2.5/4.2Mpa
喷嘴压力
≥0.8Mpa
≥1.4Mpa
≥0.8Mpa
酸性值
中等
低
最低
毒性值
中等(含氢氟酸)
低
无
低
LOAEL
10.5
浓度大于20%人员死亡
52
7.5
NOAEL
9.0
43
5.0
气体产物
HF
CO2
N2、CO2、Ar2
HF、HBr
启动产物
N2
N2
N2
N2
气体与空气重量比
5.8
1.51
1.22
5.05
影响系统投资的主要因素是系统设备投资、系统瓶站建筑投资及系统的维护保养费用等。目前市场上二氧化碳、烟烙尽与七氟丙烷的单价比为1:13:110。但二氧化碳灭火系统和烟烙尽灭火系统需要的灭火浓度高,自然灭火剂的用量就大。值得注意的是,烟烙尽灭火系统其气体是以高压气态储存的,其输送距离可长达150米,大大超过了其它以液态储存的灭火剂的输送距离。所以它一套组合分配的装置可以保护的防护区数量可以很多,这样烟烙尽灭火系统的经济性是显而易见的。瓶站的建筑面积与灭火剂的用量是联系在一起的,所以七氟丙烷灭火系统需要的瓶站的建筑面积要大大小于二氧化碳灭火系统和烟烙尽灭火系统。但由于烟烙尽灭火系统保护的距离长,所以需要的瓶站的数量也少。二氧化碳灭火系统需要的储存容器,系统体积大、重量高,需要瓶站的建筑面积大,瓶站的建筑投资大。关于系统的维护保养费用,10年时间二氧化碳、烟烙尽与七氟丙烷系统灭火剂的再充填的费用比约为1:4:85,所以二氧化碳和烟烙尽的再填充费用是相对低的。通过上述各方面比较烟烙尽灭火系统的系统投资是最低的。
在保护人身安全方面,七氟丙烷人未观察到不良反应的浓度为9%,系统最小设计浓度为7%,烟烙尽人未观察到不良反应的浓度为43%,系统最小设计浓度为37.5%,所以七氟丙烷和烟烙尽在防护区喷放对人体是相对安全的。但七氟丙烷在高温条件下会产生对人体有害的HF,所以它使用时的浓度必须低于NOAEL值,而且灭火时的拖放时间不能过长。而二氧化碳在34%以上会使人窒息死亡。据统计,近几年世界上由于火灾中被二氧化碳窒息而死的人每年多达80余人。所以二氧化碳系统不适合人员出入较多的场所。
XXX片区枢纽楼需要气体保护的区域多为通信机房、寻呼机房、交换机房等,工作人员和值班人员较多。六层以下多为商务中心等公共场所,人流量也较大。该建筑需要气体保护的防护区多,空间也较大,组合分配的系统也多。综合考虑以上各方面,虽然二氧化碳灭火系统具有来源广泛、价格低廉、无腐蚀性、不污染环境等优点,但瓶组占地面积大、泄露点多,给以后的维修会带来一系列的难度。而且气体容易从液压站的开口处流失,保证其灭火浓度也较难。灭火剂的沉降也较快,特别是在高度和空间较大的情况下,高处火灾就难以扑灭。烟烙尽灭火系统虽然系统投资低,对人体安全等许多优点,但目前在国内还没有完整的设计规范。所以该建筑采用的最适合的气体灭火系统为七氟丙烷灭火系统。它的灭火效率高,对大气臭氧层的损耗潜能值ODP值为零,对人体相对安全,瓶组占地面积小,但它只适用于扑灭固体表面火灾,不适宜扑救固体深位火灾。
2.七氟丙烷灭火系统设计
2.1工程概况
XXX片区枢纽楼地上十七层,地下两层,裙房三层,辅房三层。建筑面积23000平米,建筑高度为67.7米。四层到十六层层高3.9米,其中七至十六层的通信机房、电力室、电池室、传输机房、LS机房、ATM机房、网管中心、软件中心、计费中心和新技术发展用房,需要用气体灭火系统进行保护,采用七氟丙烷灭火系统对其进行保护。
根据《高层民用建筑防火设计规范》该建筑为一类建筑,耐火等级为一级,危险等级为中危险等级Ⅰ级。七层到十六层需要气体保护的区域,设有防静电地板,地板高0.5米,净空高为3.4米(比例为5:34)。
2.2七氟丙烷(FM—200)灭火系统
2.2.1七氟丙烷气体灭火剂性能及灭火机理
七氟丙烷灭火剂HFC-227ea(美国商标名称为FM-200)是一种无色无味、低毒性、电绝缘性好,无二次污染的气体,对大气臭氧层的耗损潜能值(ODP)为零。其化学结构式为CF3-CHF-CF3。在一定压强下呈液态储存。在火灾中具有抑制燃烧过程基本化学反应的能力,其分解产物能够中断燃烧过程中化学连锁反应的链传递,因而灭火能力强、灭火速度快。
2.2.2七氟丙烷灭火系统工作程序及原理
当防护区发生火灾时,灭火系统有三种启动方式:
自动启动:此时感温探测器、感烟探测器发出火灾信号报警,经甄别后由报警和灭火控制装置发出声光报警,下达联动指令,关闭联锁设备,发出灭火指令,延迟0-30秒电磁阀动作,启动启动容器和分区选择阀,释放启动气体,开启各储气瓶容器阀,从而释放灭火剂,实施灭火。
手动启动:将灭火控制盘的控制方式选择键拨到“手动”位置。此时自动控制无从执行。操作灭火控制盘上的灭火手动按钮,仍将按上述即定程序实施灭火。一般情况,保护区门外设有手动控制盒。盒内设紧急启动按钮和紧急停止按钮。在延迟时间终了前可执行紧急停止。
应急启动:在灭火控制装置不能发出灭火指令时,可进行应急启动。此时,人为启动联动设备,拔下电磁启动器上的保险盖,压下电磁铁芯轴。释放启动气体,开启整个灭火系统,释放灭火剂,实施灭火。
2.3系统设计
2.3.1灭火方式
按防护区的特征和灭火方式采用全淹没灭火系统,管网输送方式为组合分配系统。
全淹没灭火系统是在规定的时间内,向防护区喷放设计规定用量的七氟丙烷,并使其均匀的充满整个防护区的灭火系统。组合分配系统是用一套七氟丙烷的储存装置通过管网的选择分配,保护两个或两个以上防护区的灭火系统。优点是减少灭火剂的用量,大大节省系统投资。因为本建筑需要气体保护的机房较多多,所以采用组合分配系统最为经济可行。
2.3.2防护区的划分
《规范》中规定:防护区宜以固定的单个封闭空间划分;当同一区间的吊顶层和地板下需同时保护时,可合为一个防护区;当采用管网灭火系统时,一个防护区的面积不宜大于500m2,容积不宜大于2000m3。
根据《规范》规定,把该组合分配系统四个系统中各个防护区的划分归纳于下表,其中最大保护区的面积为310.25m2,容积为1210m3。
系统划分表表2.1
系统(一)
系统(二)
编号
保护区名称
楼层
编号
保护区名称
楼层
1
左LS机房
7F
1
左传输机房
9F
2
右LS机房
7F
2
右传输机房
9F
3
电池室
8F
3
左ATM机房
10F
4
小电力室
8F
4
右ATM机房
10F
5
大电力室
8F
5
左同步网监控中心
11F
6
主机房
11F
7
右同步网监控中心
11F
注:防护区的工作区和地板下均设置喷头和探测器,防护区设有弹簧门不需单设泄压口。
2.3.3管网系统
本系统的管网布置为非均衡管网,但工作区和地板下的管网布置都为均衡管网。《规范》中规定,均衡管网要符合下列要求:
①管网中各个喷头的流量相等;
②在管网上,从第一分流点至各喷头的管道阻力损失,其相互间的最大差值不应大于20%。
管网设计布置为均衡系统有利于灭火剂在防护区喷放均匀,利于灭火。可不考虑管网中的剩余量,做到节省。可只选用一种规格的喷头,只计算“最不利点”的阻力损失就可以了。虽然对整个系统来说是非均衡管网,但因把工作区和地板下都尽量布置为均衡,所以该系统工作区中的喷头型号相同,地板下的喷头型号相同,工作区和地板下为不同型号的喷头。在管网设计时,考虑到经济性,应尽量减少管段长度,减少弯头数量。做到管网布置合理、经济。
2.3.4增压方式
根据《规范》规定:七氟丙烷灭火系统应采用氮气增压输送。氮气的含水量不应大于0.006%。额定增压压力选用4.2±0.125MPa级别。
2.3.5系统组件
系统主要组件有:启动钢瓶组、储气钢瓶组以及单向阀、压力继电器、选择阀、泄气卸压阀、金属软管、集流管、喷头及管路附件、灭火剂输送管网、储气钢瓶架、启动钢瓶架等。
启动钢瓶组由电动启动阀、电磁阀、压力表组成。储气钢瓶组由容器阀、导管、钢瓶组成。单向阀包括气控单向阀和液流单向阀。
2.4系统设计与管网计算2.4.1系统设计计算
系统(一):
(一)确定灭火设计浓度
依据《七氟丙烷洁净气体灭火系统设计规范》(以下简称规范)
取C%=8%
(二)计算保护空间实际容积
1区、2区、3区、5区容积相同:
V5区=14.8×22.4×3.9=1292.93(m3)其中地板下:165.76m3工作区:1127.17m3
4区容积:
V4区=(7.6×21.6-8.2×0.9)×3.9=611(m3)其中地板下:78.33m3工作区:532.67m3
(三)计算灭火剂设计用量
依据《规范》中规定W=K×(V/S)×C/(100-C)
其中K=1,S=0.1269+0.000513×20℃=0.13716(m3/kg)
1区、2区、3区、5区灭火剂设计用量相同:
W=1×(1292.93/0.13716)×8/(100-8)=819.69(kg)
其中地板下:104.7kg工作区:714.99kg
根据单瓶设计储量为819.69Kg/59Kg/瓶=13.89(瓶)
需要14只储瓶,所以W取826kg
工作区W1=720(kg)地板下W2=106(kg)
4区灭火剂设计用量:
W=1×(611/0.13716)×8/(100-8)=387.4(kg)
根据单瓶设计储量为387.4Kg/59Kg/瓶=6.57(瓶)
需要7只储瓶,所以W取413kg
工作区W1=360(kg)地板下W2=53(kg)
(四)设定灭火喷放时间
依据《规范》规定,取t=7s
(五)设定喷头布置与数量
选用JP型喷头,其保护半径为7.5m,最大保护高度为5m。工作区布置8只喷头,按保护区平面均匀喷洒布置喷头。地板下与工作区的布置形式相同。
(六)选定灭火剂储存瓶规格及数量
1区、2区、3区、5区相同
根据W=819.69kg,选用JR-100/59储存瓶14只。
4区:
根据W=387.4kg,选用JR-100/59储存瓶7只。
(七)绘制管网设计图,见附图
(八)计算管道平均设计流量
(1)1区、2区、3区、5区相同:
主干管:QW=W/t=819.69/7=117.1(kg/s)
支管:工作区:Q1-2=714.99/7=102.14(kg/s)
Q2-3=51.07(kg/s)
Q3-4=25.535(kg/s)
Q4-5=12.7677(kg/s)
地板下:Q1-2′=104.7/7=14.96(kg/s)
Q2′-3′=7.48(kg/s)
Q3′-4′=3.739(kg/s)
Q4′-5′=1.8696(kg/s)
储瓶出流管:QP=819.69/14/7=8.36(kg/s)
4区:
主干管:QW=W/t=413/7=59(kg/s)
支管:工作区:Q1-2=360/7=51.43(kg/s)
Q2-3=25.714(kg/s)
Q3-4=12.857(kg/s)
Q4-5=6.4286(kg/s)
地板下:Q1-2′=53/7=7.57(kg/s)
Q2′-3′=3.7857(kg/s)
Q3′-4′=1.8929(kg/s)
Q4′-5′=0.9464(kg/s)
储瓶出流管:QP=413/7/7=8.43(kg/s)
(九)选择管网管道通径,标于图上
(十)计算充装率
系统设置用量:WS=W+△W1+△W2
储瓶内剩余量:△W1=n×3.5=14×3.5=49(kg)
管网内剩余量:△W2=8×2.9×0.49×1.04=16.55(kg)
WS=819.69+49+16.55=885.24(kg)
充装率η=885.24/(14×0.1)=632.31(kg/m3)
(十一)计算管网管道内容积
依据管网计算图。
1区VP1′=29.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×3.42=0.489(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅠ=VP1′+VP2′=0.546(m3)
2区:VP1′=24.507×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.41(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅡ=VP1′+VP2′=0.467(m3)
3区:VP1′=27.307×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.434(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅢ=VP1′+VP2′=0.491(m3)
4区:VP1′=37.45×8.33+3.53×4.7+5.35×2×3.42+1.85×4×1.96+2.675×8×1.19=0.4(m3)
VP2′=6.43×1.19+5.35×2×0.8+1.85×4×0.49+2.675×8×0.31=0.0265(m3)
VPⅣ=VP1′+VP2′=0.4265(m3)
5区:VP1′=21.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.3885(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅤ=VP1′+VP2′=0.4455(m3)
(十二)选用储瓶增压压力
依据《规范》中规定,选用P。=4.3MPa(绝压)
(十三)计算全部储瓶气相总容积
1区、2区、3区、5区相同
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=14×0.1×(1—632.31/1407)=0.77(m3)
4区:
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=7×0.1×(1—632.31/1407)=0.385(m3)
(十四)计算“过程中点”储瓶内压力(喷放七氟丙烷设计用量50%时的“过程中点”)
1区:Pm1=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.546]=2.06MPa(绝压)
2区:Pm2=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.467]=2.175MPa(绝压)
3区:Pm3=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.491]=2.133MPa(绝压)
4区:Pm4=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.385/[0.385+413/(2×1407)+0.4265]=1.723MPa(绝压)
5区:Pm5=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.4455]=2.2MPa(绝压)
(十五)计算管路阻力损失
⑴a-b管段
1区、2区、3区、4区、5区:
(△P/L)a-b=0.0029(MPa/m)La-b=3.6+3.5+0.5=7.6(m)
△Pa-b=0.02204(MPa)
工作区:
⑵b-1管段
1区:(△P/L)b-1=0.011(MPa/m)
Lb-1=24.807+10+5×6.4+1.9=68.707(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×68.707=0.756(MPa)
2区:(△P/L)b-1=0.011(MPa/m)
Lb-1=19.507+10+4×6.4+2.1=57.2(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×57.2=0.63(MPa)
3区:(△P/L)b-1=0.011(MPa/m)
Lb-1=22.307+10+3×6.4+2.1=53.407(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×53.407=0.59(MPa)
4区:(△P/L)b-1=0.0031(MPa/m)
Lb-1=32.45+10+4×5.2+2.1=65.15(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×65.15=0.2(MPa)
5区:(△P/L)b-1=0.011(MPa/m)
Lb-1=16.807+10+3×6.4+2.1=48.107(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×48.107=0.53(MPa)
⑶1-2管段
1区、2区、3区、5区:
(△P/L)1-2=0.009(MPa/m)
L1-2=7.4+2.1=9.5(m)
△P1-2=0.009×9.5=0.0855(MPa)
4区:
(△P/L)1-2=0.0085(MPa/m)
L1-2=3.53+5.2+0.6=9.33(m)
△P1-2=0.0085×9.33=0.0793(MPa)
⑷2-3管段
1区2区3区5区:
(△P/L)2-3=0.007(MPa/m)
L2-3=5.6+7.3+0.6=13.5(m)
△P2-3=0.007×13.5=0.0945(MPa)
4区:
(△P/L)2-3=0.006(MPa/m)
L2-3=5.35+5.8+0.5=11.65(m)
△P2-3=0.006×11.65=0.0699(MPa)
⑸3-4管段
1区2区3区5区:
(△P/L)3-4=0.005(MPa/m)
L3-4=3.675+5.8+0.5=9.975(m)
△P3-4=0.005×9.975=0.0499(MPa)
4区:
(△P/L)3-4=0.0058(MPa/m)
L3-4=1.85+5+0.4=7.25(m)
△P3-4=0.0058×7.25=0.042(MPa)
⑹4-5管段
1区:
(△P/L)4-5=0.0005(MPa/m)
L4-5=2.8+0.2+5+3.5=11.5(m)
△P4-5=0.0005×11.5=0.006(MPa)
2区、3区、5区:
(△P/L)4-5=0.0045(MPa/m)
L4-5=2.8+0.2+5+0.4+3.5=11.9(m)
△P4-5=0.0045×11.9=0.05355(MPa)
4区:
(△P/L)4-5=0.0049(MPa/m)
L4-5=2.675+4+0.3+0.2+2.8=9.975(m)
△P4-5=0.0049×9.975=0.049(MPa)
工作区管道阻力损失:
1区:∑△P1=1.014(MPa)
2区:∑△P1=0.9355(MPa)
3区:∑△P1=0.9(MPa)
4区:∑△P1=0.462(MPa)
5区:∑△P1=0.84(MPa)
地板下:
1区、2区、3区、5区:
⑴1-2′管段
(△P/L)1-2′=0.007(MPa/m)
L1-2′=10.3+3.5+2.1=15.9(m)
△P1-2′=0.007×15.9=0.1113(MPa)
⑵2′-3′管段
(△P/L)2′-3′=0.006(MPa/m)
L2′-3′=5.6+4+0.3=9.9(m)
△P2′-3′=0.006×9.9=0.594(MPa)
⑶3′-4′管段
(△P/L)3′-4′=0.0046(MPa/m)
L3′-4′=3.675+3.2+0.3=7.175(m)
△P3′-4′=0.0046×7.175=0.033(MPa)
⑷4′-5′管段
(△P/L)4′-5′=0.004(MPa/m)
L4′-5′=2.8+0.2+1.8+2.5+0.2=7.5(m)
△P4′-5′=0.004×7.5=0.03(MPa)
4区:
⑴1-2′管段
(△P/L)1-2′=0.0065(MPa/m)
L1-2′=3.53+2.9+1.7+0.9+2.8=11.83(m)
△P1-2′=0.0065×11.83=0.0769(MPa)
⑵2′-3′管段
(△P/L)2′-3′=0.0055(MPa/m)
L2′-3′=5.35+3.2+0.3=8.85(m)
△P2′-3′=0.0055×8.85=0.0487(MPa)
⑶3′-4′管段
(△P/L)3′-4′=0.005(MPa/m)
L3′-4′=1.85+2.5+0.2=4.55(m)
△P3′-4′=0.005×4.55=0.0227(MPa)
⑷4′-5′管段
(△P/L)4′-5′=0.0041(MPa/m)
L4′-5′=2.675+0.2+1.5+2+0.2=6.575(m)
△P4′-5′=0.0041×6.575=0.027(MPa)
地板下管道阻力损失:
1区:∑△P2=1.012(MPa)
2区:∑△P2=0.8857(MPa)
3区:∑△P2=0.85(MPa)
4区:∑△P2=0.4(MPa)
5区:∑△P2=0.786(MPa)
(十六)计算高程压头
依据《规范》中公式:Ph=10-6Hγg
(H为喷头高度相对“过程中点”储瓶液面的位差)
1区、2区相同:
工作区:Ph1=10-6×(—1)×1407×9.81=—0.0138(MPa)
地板下:Ph2=10-6×(—4)×1407×9.81=—0.055(MPa)
3区、4区、5区相同:
工作区:Ph1=10-6×(2.8)×1407×9.81=0.0386(MPa)
地板下:Ph2=10-6×(—0.1)×1407×9.81=—0.00138(MPa)
(十七)计算喷头工作压力
依据《规范》中公式:Pc=Pm—(∑△P±Ph)
1区:工作区:Pc1=2.06—1.014+0.0138=1.06(MPa)
地板下:Pc2=2.06—1.012+0.055=1.103(MPa)
2区:工作区:Pc1=2.175—0.9355+0.0138=1.25(MPa)
地板下:Pc2=2.175—0.8857+0.055=1.34(MPa)
3区:工作区:Pc1=2.133—0.9—0.0386=1.193(MPa)
地板下:Pc2=2.133—0.85+0.00138=1.283(MPa)
4区::工作区:Pc1=1.723—0.4622—0.0386=1.22(MPa)
地板下:Pc2=1.723—0.4+0.00138=1.32(MPa)
5区::工作区:Pc1=2.2—0.84—0.0386=1.32(MPa)
地板下:Pc2=2.2—0.786+0.00138=1.415(MPa)
(十八)验算设计计算结果
依据《规范》规定,应满足下列条件:
⑴Pc≥0.8MPa(绝压)
⑵Pc≥Pm/2
1区:Pm1/2=1.03MPa2区:Pm2/2=1.0875MPa
3区:Pm3/2=1.0665MPa4区:Pm4/2=0.8615MPa
5区:Pm5/2=1.1MPa
各防护区均满足,所以合格。
(十九)计算喷头计算面积及确定喷头规格
根据《规范》规定:依据Pc查“七氟丙烷JP-6—36型喷头流量曲线”确定喷头计算单位面积流量q(kg/s·cm2)。然后通过F=Q/q得出喷头计算面积,从而确定喷头规格。Q为喷头平均设计流量。
1区:工作区:qc1=2.1(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=6.08(cm2)喷头规格为JP-36型
地板下:qc2=2.15(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.87(cm2)喷头规格为JP-13型
2区:工作区:qc1=2.4(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.32(cm2)喷头规格为JP-34型
地板下:qc2=2.5(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.748(cm2)喷头规格为JP-13型
3区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.68(cm2)喷头规格为JP-36型
地板下:qc2=2.45(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.763(cm2)喷头规格为JP-13型
4区:工作区:qc1=2.4(kg/s·cm2)Qc1=6.4286(kg/s)
Fc1=2.679(cm2)喷头规格为JP-24型
地板下:qc2=2.5(kg/s·cm2)Qc2=0.9464(kg/s)
Fc2=0.379(cm2)喷头规格为JP-9型
5区:工作区:qc1=2.5(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.11(cm2)喷头规格为JP-32型
地板下:qc2=2.55(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.733(cm2)喷头规格为JP-13型
(二十)计算达到设计浓度实际喷放时间及校核地板下喷头型号
1区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.1=13.467(kg/s)
支管流量为13.467×8=107.738(kg/s)
实际喷放时间为t=714.99/107.738=6.64(s)
校核地板下喷头型号:支管流量为104.7/6.64=15.78(kg/s)
喷头流量为15.78/8=1.97(kg/s)
Fc=1.97/2.15=0.917(cm2)
喷头校核为规格为JP-14型
2区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.4=13.728(kg/s)
支管流量为13.728×8=109.824(kg/s)
实际喷放时间为t=714.99/109.824=6.51(s)
校核地板下喷头型号:支管流量为104.7/6.51=16.08(kg/s)
喷头流量为16.08/8=2.01(kg/s)
Fc=2.01/2.5=0.8(cm2)
喷头规格为JP-13型
3区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.25=12.87(kg/s)
支管流量为12.87×8=102.96(kg/s)
实际喷放时间为t=714.99/102.96=6.944(s)
校核地板下喷头型号:支管流量为104.7/6.944=15.077(kg/s)
喷头流量为15.077/8=1.885(kg/s)
Fc=1.885/2.45=0.769(cm2)
喷头规格为JP-13型
4区:工作区喷头型号为JP-24型,喷口计算面积2.85(cm2)
喷头流量Q=2.85×2.4=6.84(kg/s)
支管流量为6.84×8=54.72(kg/s)
实际喷放时间为t=360/54.72=6.58(s)
校核地板下喷头型号:支管流量为53/6.58=8.056(kg/s)
喷头流量为8.056/8=1.007(kg/s)
Fc=1.007/2.5=0.403(cm2)
喷头规格校核为JP-10型
5区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.5=14.3(kg/s)
支管流量为14.3×8=114.4(kg/s)
实际喷放时间为t=714.99/114.4=6.25(s)
校核地板下喷头型号:支管流量为104.7/6.25=16.75(kg/s)
喷头流量为16.75/8=2.094(kg/s)
Fc=2.094/2.55=0.8212(cm2)
喷头规格为JP-14型
系统(二):
(一)确定灭火设计浓度
依据《七氟丙烷洁净气体灭火系统设计规范》取C=8%
(二)计算保护空间实际容积
1区、2区、3区、4区、5区、7区容积相同:
V1区=14.8×22.4×3.9=1292.93(m3)其中地板下:165.76m3工作区:1127.17m3
6区容积:
V4区=(7.6×21.6-8.2×0.9)×3.9=611(m3)其中地板下:78.33m3工作区:532.67m3
(三)计算灭火剂设计用量
依据《规范》中规定W=K×(V/S)×C/(100-C)
其中K=1,S=0.1269+0.000513×20℃=0.13716(m3/kg)
1区、2区、3区、4区、5区、7区灭火剂设计用量相同:
W=1×(1292.93/0.13716)×8/(100-8)=819.69(kg)
其中地板下:W2=104.7kg工作区:W1=714.99kg
根据单瓶设计储量为819.69Kg/59Kg/瓶=13.89(瓶)
需要14只储瓶,所以W取826kg
工作区W1=720(kg)地板下W2=106(kg)
6区灭火剂设计用量:
W=1×(611/0.13716)×8/(100-8)=387.4(kg)
根据单瓶设计储量为387.4Kg/59Kg/瓶=6.57(瓶)
需要7只储瓶,所以W取413kg
工作区W1=360(kg)地板下W2=53(kg)
(四)设定灭火喷放时间
依据《规范》规定,取t=7s
(五)设定喷头布置与数量
选用JP型喷头,其保护半径为7.5m,最大保护高度为5m。工作区布置8只喷头,按保护区均匀喷洒布置喷头。地板下与工作区的布置形式相同。
(六)选定灭火剂储存瓶规格及数量
1区、2区、3区、4区、5区、7区相同:
根据W=819.69kg,选用JR-100/59储存瓶14只。
6区:
根据W=387.4kg,选用JR-100/59储存瓶7只。
(七)绘出管网计算图,见附图
(八)计算管道平均设计流量
(1)1区、2区、3区、4区、5区、7区相同:
主干管:QW=W/t=819.69/7=117.1(kg/s)
支管:工作区:Q1-2=714.99/7=102.14(kg/s)
Q2-3=51.07(kg/s)
Q3-4=25.535(kg/s)
Q4-5=12.7677(kg/s)
地板下:Q1-2′=104.7/7=14.96(kg/s)
Q2′-3′=7.48(kg/s)
Q3′-4′=3.739(kg/s)
Q4′-5′=1.8696(kg/s)
储瓶出流管:QP=819.69/14/7=8.36(kg/s)
6区:
主干管:QW=W/t=413/7=59(kg/s)
支管:工作区:Q1-2=360/7=51.43(kg/s)
Q2-3=25.714(kg/s)
Q3-4=12.857(kg/s)
Q4-5=6.4286(kg/s)
地板下:Q1-2′=53/7=7.57(kg/s)
Q2′-3′=3.7857(kg/s)
Q3′-4′=1.8929(kg/s)
Q4′-5′=0.9464(kg/s)
储瓶出流管:QP=413/7/7=8.43(kg/s)
(九)选择管网管道通径,标于图上
(十)计算充装率
系统设置用量:WS=W+△W1+△W2
储瓶内剩余量:△W1=n×3.5=14×3.5=49(kg)
管网内剩余量:△W2=8×2.9×0.49×1.04=16.55(kg)
WS=819.69+49+16.55=885.24(kg)
充装率η=885.24/(14×0.1)=632.31(kg/m3)
(十一)计算管网管道内容积
依据管网计算图。
1区:VP1′=32.107×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×3.42=0.508(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅠ=VP1′+VP2′=0.565(m3)
2区:VP1′=29.607×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.443(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅡ=VP1′+VP2′=0.5(m3)
3区:VP1′=29.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.489(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅢ=VP1′+VP2′=0.546(m3)
4区:VP1′=24.507×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.41(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅣ=VP1′+VP2′=0.467(m3)
5区:VP1′=27.307×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.434(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅤ=VP1′+VP2′=0.491(m3)
6区VP1′=37.45×8.33+3.53×4.7+5.35×2×3.42+1.85×4×1.96+2.675×8×1.19=0.4(m3)
VP2′=6.43×1.19+5.35×2×0.8+1.85×4×0.49+2.675×8×0.31=0.0265(m3)
VP6=VP1′+VP2′=0.4265(m3)
7区VP1′=21.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.3885(m3)
VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)
VPⅦ=VP1′+VP2′=0.4455(m3)
(十二)选用储瓶增压压力
依据《规范》中规定,选用P。=4.3MPa(绝压)
(十三)计算全部储瓶气相总容积
1区、2区、3区、4区、5区、7区相同:
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=14×0.1×(1—632.31/1407)=0.77(m3)
6区:
依据《规范》中公式:V。=n×Vb×(1—η/γ)
=7×0.1×(1—632.31/1407)=0.385(m3)
(十四)计算“过程中点”储瓶内压力
Pm=P。V。/[V。+W/(2×γ)+VP]
1区:Pm1=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.565]=2.036MPa(绝压)
2区:Pm2=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.5]=2.121MPa(绝压)
3区:Pm3=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.546]=2.06MPa(绝压)
4区:Pm4=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.467]=2.166MPa(绝压)
5区:Pm5=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.491]=2.133MPa(绝压)
6区Pm6=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.385/[0.385+413/(2×1407)+0.4265]=1.7276MPa(绝压)
7区PmⅦ=P。V。/[V。+W/(2×γ)+VP]
=4.3×0.77/[0.77+819.69/(2×1407)+0.4455]=2.197MPa(绝压)
(十五)计算管路阻力损失
⑴a-b管段
1区、2区、3区、4区、5区、6区、7区:
(△P/L)a-b=0.0029(MPa/m)La-b=3.6+3.5+0.5=7.6(m)
△Pa-b=0.02204(MPa)
工作区:
⑵b-1管段
1区:(△P/L)b-1=0.011(MPa/m)
Lb-1=27.107+10+5×6.4+1.9=71.007(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×71.007=0.78(MPa)
2区:(△P/L)b-1=0.011(MPa/m)
Lb-1=24.607+10+4×6.4+2.1=62.307(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×62.307=0.685(MPa)
3区:(△P/L)b-1=0.011(MPa/m)
Lb-1=24.807+10+4×6.4+2.1=62.307(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×68.707=0.685(MPa)
4区:(△P/L)b-1=0.011(MPa/m)
Lb-1=19.507+10+4×6.4+2.1=57.2(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×57.2=0.63(MPa)
5区:(△P/L)b-1=0.011(MPa/m)
Lb-1=22.307+10+3×6.4+2.1=53.407(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×53.407=0.59(MPa)
6区:(△P/L)b-1=0.0031(MPa/m)
Lb-1=32.45+10+4×5.2+2.1=65.15(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×65.15=0.2(MPa)
7区:(△P/L)b-1=0.011(MPa/m)
Lb-1=16.807+10+3×6.4+2.1=48.107(m)
△Pb-1=(△P/L)b-1×Lb-1=0.011×48.107=0.53(MPa)
⑶1-2管段
1区、2区、3区、4区、5区、7区:
(△P/L)1-2=0.009(MPa/m)
L1-2=7.4+2.1=9.5(m)
△P1-2=0.009×9.5=0.0855(MPa)
6区:
(△P/L)1-2=0.0085(MPa/m)
L1-2=3.53+5.2+0.6=9.33(m)
△P1-2=0.0085×9.33=0.0793(MPa)
⑷2-3管段
1区、2区、3区、4区、5区、7区:
(△P/L)2-3=0.007(MPa/m)
L2-3=5.6+7.3+0.6=13.5(m)
△P2-3=0.007×13.5=0.0945(MPa)
6区:
(△P/L)2-3=0.006(MPa/m)
L2-3=5.35+5.8+0.5=11.65(m)
△P2-3=0.006×11.65=0.0699(MPa)
⑸3-4管段
1区、2区、3区、4区、5区、7区:
(△P/L)3-4=0.005(MPa/m)
L3-4=3.675+5.8+0.5=9.975(m)
△P3-4=0.005×9.975=0.0499(MPa)
6区:
(△P/L)3-4=0.0058(MPa/m)
L3-4=1.85+5+0.4=7.25(m)
△P3-4=0.0058×7.25=0.042(MPa)
⑹4-5管段
1区、3区:
(△P/L)4-5=0.0005(MPa/m)
L4-5=2.8+0.2+5+3.5=11.5(m)
△P4-5=0.0005×11.5=0.006(MPa)
2区、4区、5区、7区:
(△P/L)4-5=0.0045(MPa/m)
L4-5=2.8+0.2+5+0.4+3.5=11.9(m)
△P4-5=0.0045×11.9=0.05355(MPa)
6区:
(△P/L)4-5=0.0049(MPa/m)
L4-5=2.675+4+0.3+0.2+2.8=9.975(m)
△P4-5=0.0049×9.975=0.049(MPa)
工作区管道阻力损失:
1区:∑△P1=1.04(MPa)
2区:∑△P1=0.99(MPa)
3区:∑△P1=0.92(MPa)
4区:∑△P1=0.9355(MPa)
5区:∑△P1=0.9(MPa)
6区:∑△P1=0.462(MPa)
7区:∑△P1=0.84(MPa)
地板下:
1区、2区、3区、4区、5区、7区:
⑴1-2′管段
(△P/L)1-2′=0.007(MPa/m)
L1-2′=10.3+3.5+2.1=15.9(m)
△P1-2′=0.007×15.9=0.1113(MPa)
⑵2′-3′管段
(△P/L)2′-3′=0.006(MPa/m)
L2′-3′=5.6+4+0.3=9.9(m)
△P2′-3′=0.006×9.9=0.594(MPa)
⑶3′-4′管段
(△P/L)3′-4′=0.0046(MPa/m)
L3′-4′=3.675+3.2+0.3=7.175(m)
△P3′-4′=0.0046×7.175=0.033(MPa)
⑷4′-5′管段
(△P/L)4′-5′=0.004(MPa/m)
L4′-5′=2.8+0.2+1.8+2.5+0.2=7.5(m)
△P4′-5′=0.004×7.5=0.03(MPa)
6区:
⑴1-2′管段
(△P/L)1-2′=0.0065(MPa/m)
L1-2′=3.53+2.9+1.7+0.9+2.8=11.83(m)
△P1-2′=0.0065×11.83=0.0769(MPa)
⑵2′-3′管段
(△P/L)2′-3′=0.0055(MPa/m)
L2′-3′=5.35+3.2+0.3=8.85(m)
△P2′-3′=0.0055×8.85=0.0487(MPa)
⑶3′-4′管段
(△P/L)3′-4′=0.005(MPa/m)
L3′-4′=1.85+2.5+0.2=4.55(m)
△P3′-4′=0.005×4.55=0.0227(MPa)
⑷4′-5′管段
(△P/L)4′-5′=0.0041(MPa/m)
L4′-5′=2.675+0.2+1.5+2+0.2=6.575(m)
△P4′-5′=0.0041×6.575=0.027(MPa)
地板下管道阻力损失:
1区:∑△P2=1.036(MPa)
2区:∑△P2=1.009(MPa)
3区:∑△P2=1.012(MPa)
4区:∑△P2=0.8857(MPa)
5区:∑△P2=0.85(MPa)
6区:∑△P2=0.4(MPa)
7区:∑△P2=0.786(MPa)
(十六)计算高程压头
依据《规范》中公式:Ph=10-6Hγg
(H为喷头高度相对“过程中点”储瓶液面的位差)
1区、2区:
工作区:Ph1=10-6×(—4.9)×1407×9.81=—0.069(MPa)
地板下:Ph2=10-6×(—7.9)×1407×9.81=—0.11(MPa)
3区、4区:
工作区:Ph1=10-6×(—1)×1407×9.81=—0.0138(MPa)
地板下:Ph2=10-6×(—4)×1407×9.81=—0.055(MPa)
5区、6区、7区:
工作区:Ph1=10-6×(2.8)×1407×9.81=0.0386(MPa)
地板下:Ph2=10-6×(—0.1)×1407×9.81=—0.00138(MPa)
(十七)计算喷头工作压力
依据《规范》中公式:Pc=Pm—(∑△P±Ph)
1区:工作区:Pc1=2.036—1.04+0.069=1.065(MPa)
地板下:Pc2=2.036—1.036+0.11=1.11(MPa)
2区:工作区:Pc1=2.121—0.99+0.069=1.2(MPa)
地板下:Pc2=2.121—1.009+0.11=1.222(MPa)
3区:工作区:Pc1=2.06—0.92+0.0138=1.154(MPa)
地板下:Pc2=2.06—1.012+0.055=1.103(MPa)
4区:工作区:Pc1=2.166—0.9355+0.0138=1.244(MPa)
地板下:Pc2=2.166—0.8857+0.055=1.335(MPa)
5区:工作区:Pc1=2.133—0.9—0.0386=1.193(MPa)
地板下:Pc2=2.133—0.85+0.00138=1.283(MPa)
6区:工作区:Pc1=1.73—0.4622—0.0386=1.23(MPa)
地板下:Pc2=1.73—0.4+0.00138=1.33(MPa)
7区:工作区:Pc1=2.197—0.84—0.0386=1.317(MPa)
地板下:Pc2=2.197—0.786+0.00138=1.412(MPa)
(十八)验算设计计算结果
依据《规范》规定,应满足下列条件:
⑴Pc≥0.8MPa(绝压)
⑵Pc≥Pm/2
1区:PmⅠ/2=1.018MPa2区:PmⅡ/2=1.0605MPa
3区:PmⅢ/2=1.03MPa4区:PmⅣ/2=1.083MPa
5区:PmⅤ/2=1.0665MPa6区:Pm6/2=0.864MPa
7区:PmⅦ/2=1.0985MPa
各防护区均满足,所以合格。
(十九)计算喷头计算面积及确定喷头规格
根据《规范》规定:依据Pc查“七氟丙烷JP-6—36型喷头流量曲线”确定喷头计算单位面积流量q(kg/s·cm2)。然后通过F=Q/q得出喷头计算面积,从而确定喷头规格。Q为喷头平均设计流量。
1区:工作区:qc1=2.1(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=6.08(cm2)喷头规格为JP-36型
地板下:qc2=2.2(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.85(cm2)喷头规格为JP-13型
2区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.675(cm2)喷头规格为JP-36型
地板下:qc2=2.4(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.779(cm2)喷头规格为JP-13型
3区:工作区:qc1=2.3(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.55(cm2)喷头规格为JP-34型
地板下:qc2=2.2(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.85(cm2)喷头规格为JP-13型
4区:工作区:qc1=2.4(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.32(cm2)喷头规格为JP-34型
地板下:qc2=2.5(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.748(cm2)喷头规格为JP-13型
5区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.67(cm2)喷头规格为JP-36型
地板下:qc2=2.45(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.763(cm2)喷头规格为JP-13型
6区:工作区:qc1=2.4(kg/s·cm2)Qc1=6.4286(kg/s)
Fc1=2.679(cm2)喷头规格为JP-24型
地板下:qc2=2.5(kg/s·cm2)Qc2=0.9464(kg/s)
Fc2=0.379(cm2)喷头规格为JP-9型
7区:工作区:qc1=2.5(kg/s·cm2)Qc1=12.7677(kg/s)
Fc1=5.11(cm2)喷头规格为JP-34型
地板下:qc2=2.55(kg/s·cm2)Qc2=1.8696(kg/s)
Fc2=0.733(cm2)喷头规格为JP-13型
(二十)计算达到设计浓度实际喷放时间及校核地板下喷头型号
1区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.1=13.467(kg/s)
支管流量为13.467×8=107.738(kg/s)
实际喷放时间为t=714.99/107.738=6.64(s)
校核地板下喷头型号:支管流量为104.7/6.64=15.78(kg/s)
喷头流量为15.78/8=1.97(kg/s)
Fc=1.97/2.2=0.895(cm2)
喷头校核为规格为JP-14型
2区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.25=14.429(kg/s)
支管流量为14.429×8=115.434(kg/s)
实际喷放时间为t=714.99/115.434=6.194(s)
校核地板下喷头型号:支管流量为104.7/6.194=16.903(kg/s)
喷头流量为16.903/8=2.11(kg/s)
Fc=2.11/2.4=0.88(cm2)
喷头规格为JP-13型
3区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.3=13.156(kg/s)
支管流量为13.156×8=105.248(kg/s)
实际喷放时间为t=714.99/105.248=6.793(s)
校核地板下喷头型号:支管流量为104.7/6.793=15.412(kg/s)
喷头流量为15.412/8=1.9265(kg/s)
Fc=1.9265/2.2=0.876(cm2)
喷头校核为规格为JP-14型
4区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.4=13.728(kg/s)
支管流量为13.728×8=109.824(kg/s)
实际喷放时间为t=714.99/109.824=6.51(s)
校核地板下喷头型号:支管流量为104.7/6.51=16.082(kg/s)
喷头流量为16.082/8=2.01(kg/s)
Fc=2.01/2.5=0.804(cm2)
喷头规格为JP-13型
5区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)
喷头流量Q=6.413×2.25=14.429(kg/s)
支管流量为14.429×8=115.434(kg/s)
实际喷放时间为t=714.99/115.434=6.194(s)
校核地板下喷头型号:支管流量为104.7/6.194=16.9(kg/s)
喷头流量为16.9/8=2.11(kg/s)
Fc=2.11/2.45=0.8624(cm2)
喷头规格为JP-14型
6区:工作区喷头型号为JP-24型,喷口计算面积2.85(cm2)
喷头流量Q=2.85×2.4=6.84(kg/s)
支管流量为6.84×8=54.72(kg/s)
实际喷放时间为t=360/54.72=6.58(s)
校核地板下喷头型号:支管流量为53/6.58=8.056(kg/s)
喷头流量为8.056/8=1.007(kg/s)
Fc=1.007/2.5=0.403(cm2)
喷头规格校核为JP-10型
7区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)
喷头流量Q=5.72×2.5=14.3(kg/s)
支管流量为14.3×8=114.4(kg/s)
实际喷放时间为t=714.99/114.4=6.25(s)
校核地板下喷头型号:支管流量为104.7/6.25=16.752(kg/s)
喷头流量为16.752/8=2.094(kg/s)
Fc=2.094/2.55=0.821(cm2)
喷头规格为JP-13型
2.4.2系统主要组件和设备型号
七氟丙烷储瓶型号:JR-100/59;瓶头阀:JVF-40/59;
电磁启动器:EIC4/24;释放阀:JS-100/4;
七氟丙烷单向阀:JD-50/59;高压软管:J-50/59;
安全阀:JA-12/4;压力讯号器:EIX4/12;
3.火灾自动报警及联动控制系统系统设计3.1火灾自动报警系统设计3.1.1报警区域和探测区域的划分
根据《火灾自动报警系统设计规范》中规定,报警区域应根据防火分区或楼层划分,可将一防火分区划为一个报警区域,也可将同层的相邻几个防火分区划为一个报警区域,但这种情况下不得跨越楼层。按防火分区的划分原则中“高层建筑在垂直方向应以每个楼层为单元划分防火分区”把该建筑一层划为一个防火分区。则一个楼层为一报警区域。
根据《火灾自动报警系统设计规范》中规定,探测区域应按独立房间划分。一个探测区域的面积不宜超过500平方米;从主要入口能看清其内部,且面积不超过1000平方米的房间,也可划为一个探测区域。该建筑把每个防护区划为一个探测区域。
3.1.2自动报警系统的设计
本设计采用集中报警控制系统。根据《电子计算机房设计规范》,设有固定灭火系统的区域,要设感温探测器和感烟探测器的组合。探测器的灵敏度采用一级。感烟探测器和感温探测器两种探测器交差布置,这样可以提高报警的准确性,感烟探测器进行火灾初期报警,感温探测器进行火灾中期报警,可以减少误报。
3.1.3探测器布置计算
⑴与七层LS机房相同大小的区域:
该探测区域净空面积为S=22.4×14.8=331.52(m2)查“各类探测器的保护面积和保护半径表”得感烟探测器的保护面积为60m2,保护半径为5.8m。
N≥S/(KA)=331.52/(0.8×60)=7个
感温探测器的保护面积为20m2,保护半径为3.6m。
N≥S/(KA)=331.52/(0.8×20)=21个
因为采用两种探测器的组合,所以探测器的数量应该在7~21个之间,综合考虑在此防护区中布置8个。
设计布局合理,布置情况详见设计图纸。
地板下布置形式与此相同。
⑵与八层小电力室相同大小的区域:
该探测区域净空面积为S=21.6×7.6=164.16(m2)查“各类探测器的保护面积和保护半径表”得感烟探测器的保护面积为60m2,保护半径为5.8m。
N≥S/(KA)=164.16/(0.8×60)=4个
感温探测器的保护面积为20m2,保护半径为3.6m。
N≥S/(KA)=164.16/(0.8×20)=11个
因为采用两种探测器的组合,所以探测器的数量应该在4~11个之间,在此防护区中布置5个。
设计布局合理。地板下只布置感烟探测器。布置情况详见设计图纸。
走廊内按间距小于15米进行布置感烟探测器。
3.1.4手动报警按钮
《火灾自动报警系统设计规范》中规定:每个防火分区应至少设置一个手动火灾报警按钮,从一个防火分区内的任何位置到最邻近的一个手动按钮的距离不应大于30米,设在公共活动场所的主要出入口处。手动报警按钮、消火栓按钮等处宜设置电话塞孔,其底边距地面高度宜为1.3-1.5米。
该建筑八层、十一层每个防护区的出口处设1个手动按钮,每层共有6个。七、九、十层每层设4个手动按钮。
机械应急操作装置设在储瓶间内。
3.2联动控制系统设计3.2.1联动控制
联动控制系统的报警系统的执行机构,使气体灭火功能在手动或电气控制状态下得以实现。联动控制的功能主要实现自动报警、气体灭火、控制风机等相关设备的启停等功能。
3.2.2控制系统设计计算
各型报警控制设备参数如下表所示,设备数量如前一节计算数量。
设备参数表表3.2.2
设备名称
工作电压
监视电流Ip
报警电流Ij
功耗
感烟探测器
DC24V
≤0.6mA
≤2.0mA
感温探测器
DC24V
≤0.8mA
≤1.4mA
手动报警按钮
DC24V
≤0.8mA
≤2.0mA
单输入/输出模块
DC24V
≤1.0mA
≤5.0mA
双输入/输出模块
DC24V
≤1.0mA
≤8.0mA
声光报警器
DC24V
≤0.8mA
≤160mA
总线隔离器
DC24V
动作电流170mA/270mA
多线控制盘14
DC24V
<4W
气体灭火控制盘6区
DC24V
<10W
放气指示灯
DC24V
≤100mA
启/停按钮
DC24V
0mA
≤20mA
报警联动控制器
≤50W
一、平面线缆线径计算:
⑴与七层相同的楼层(七、九、十层):
LS机房相同大小的区域:净空感烟探测器4个、感温探测器4个,地板下感烟探测器6个。
其它区域:感烟探测器14个、感温探测器1个、手动报警按钮5个、放气指示灯4个、紧急启/停按钮4个、声光报警器2个、双输入/出控制模块6个。
取每层所有总线设备动作电流作为总线最大电流:
Imaxj1=24*Ij+5*Ij+5*Ij+6*Ij=24*2.0+5*1.4+5*2.0+6*8.0
=113.0(mA)
根据以上计算并查电线电缆选用手册,总线选择导线为ZR-RVS-2X1.5。
非总线设备最大电流为:
Imaxj=4*Ij+4*Ij+2*Ij=4*100+4*20+2*160
=800.0(mA)
根据以上计算并查电线电缆选用手册,非总线选择导线为ZR-BV-2.0。
⑵与八层相同的楼层(八、十一层):
与电力室相同大小的区域:净空感烟探测器4个、感温探测器4个,地板下感烟探测器6个。
与小电力室相同大小的区域:净空感烟探测器2个、感温探测器2个,地板下感烟探测器3个。
其它区域:感烟探测器11个、感温探测器1个、手动报警按钮5个、放气指示灯6个、紧急启/停按钮6个、声光报警器3个、双输入/出控制模块10个。
取每层所有总线设备动作电流作为总线最大电流:
Imaxj1=26*Ij+7*Ij+5*Ij+10*Ij=26*2.0+7*1.4+5*2.0+10*8.0
=151.8(mA)
根据以上计算并查电线电缆选用手册,总线选择导线为ZR-RVS-2X1.5。
非总线设备最大电流为:
Imaxj=6*Ij+6*Ij+3*Ij=6*100+6*20+3*160
=1200.0(mA)
根据以上计算并查电线电缆选用手册,非总线选择导线为ZR-BV-2.5。
二、系统容量计算:
1.报警系统容量:
报警系统的容量可简便地计算为报警联动控制器的功率损耗与折算系数(取1.2)的积:
Pjz’=Pj*1.15=50W*1.2=60W
2.联动控制系统容量:
⑴气体灭火控制系统容量:
整个系统有6区气体灭火控制盘3个,由表3.2.2知每个气体灭火控制盘的功耗为10W,气体灭火盘动作因素为0.75,折算系数取1.5,则气体灭火控制系统容量为:
Pfz’=3Pf*0.75*1.5=3*10*0.75*1.5=33.75W
⑵其它控制系统容量:
非总线系统容量:
Pe1’=U*∑Imaxj*1.2=24V*(1.2A+0.8A)*1.2=57.6W
风机等控制系统容量:
风机等设备的控制由多线联动控制盘控制,每个灭火区域设1台多线联动控制盘(共12个),表3.2.2知每个多线联动控制盘的功耗为4W,动作因素取0.75,折算系数取1.5,则风机等控制系统容量为:
Pe2’=12*Pe2*0.75*1.5=12*4*0.75*1.5=54W
联动控制系统总容量为:
Ptz=Pfz’+Pe1’+Pe2’=33.75W+57.6W+54W=145.35W
系统总容量:
Pz=Pjz’+Ptz=60W+145.35W=205.35W
查手册得,该系统的工作电源选取DC24V/38Ah。主电源采用AC220V市电经DC24V/38Ah浮充稳压电源变换后提供DC24V电源。直流备用电源采用火灾报警控制器的专用蓄电池组提供DC24V/38Ah电源。
3.3布线
该系统采用树状布线,传输线路采用穿金属管保护方式布线。消防控制线路采用金属管顶板内暗敷管保护,且保护层厚度不小于30mm。火灾探测器的传输线路,选择不同颜色的绝缘导线,相同用途的导线的颜色一致。接线端子有标号。火灾自动报警系统的传输网络不与其他系统的传输网络合用。
3.4系统组件
感温探测器;感烟探测器;灭火控制箱;声光报警器;紧急启动停止按钮;放气指示灯;警铃;应急照明灯等。
4.安全疏散设计
防护区应有足够宽的疏散通道和出口,保证人员在30秒内能撤出防护区。七氟丙烷在火场的高温条件下会产生HF,对人员和设备都有轻度危害。在发生火灾时,为了避免建筑物内人员因火烧、烟气中毒、建筑构件倒塌破坏、灭火剂喷放后中毒而造成的伤害,也为了能及时启动灭火剂,扑灭火灾,尽可能减少损失。人员安全撤离防护区的允许疏散时间为30秒。所以要求人员在30秒内撤离防护区,否则是不安全的。
安全疏散计算:
在防护区内离门最远的距离为L=16.1m
人走到房门所需时间T1=L/V(V取1.2m/s)
T1=L/V=16.1/1.2=13.42s
检验是否有人员滞留现象T2=Q/(NB)
Q为室内人数,取15人
B为房门宽度为1米
N为房门通行系数,平地取1.3人/m·s
T2=15/(1×1.3)=11.54s<T1
所以疏散时不会发生人员滞留现象。
为了更好的进行安全疏散,保护人员安全,对防护区有下列安全要求:防护区的疏散通道和出口应设置应急照明与疏散指示标志。防护区内设置声光报警器,防护区的入口处设置放气指示灯。防护区的门应向外开启,并能自行关闭;疏散出口的门必须能从防护区内打开。
5.经济预算
根据国家政策,进行工程建设应遵守的基本原则是“安全可靠、技术先进、经济合理”。“安全可靠”以安全为本,要求必须达到预期目的;“技术先进”则要求火灾报警、灭火控制及灭火系统设计科学,采用设备先进、成熟;“经济合理”则是在保证安全可靠、技术先进的前提下,做到节省工程投资费用。
本设计在设计计算时已验算了达到设计灭火浓度所需要的时间都小于7秒,而且自动报警系统采用感烟探测器和感温探测器两种探测器的组合进行布置,这样报警准确,所以该系统基本可以达到预期目的。在进行管网布置时,尽量布置成均衡管网,尽量减少弯头数量和管道长度,节省了工程投资费用。
经济预算采用《全国统一安装工程预算定额四川省估价表》SGD-5-2000。
依据我公司长期经验,其中气压试验、吹扫试验的数量按管径100毫米内的管道长度计算,主材数量按管道内表面积除以3m2/瓶来确定氮气瓶数量。支架制作安装、支架除锈、支架刷红丹、支架刷银粉的数量按支架长度乘以1.7kg/m来确定。系统组件水压试验和系统组件严密试验的数量按选择阀、气液单向阀、高压软管、汇集管的数量之和来确定。
6.结束语
通过紧张的毕业设计,我的收获很大。我已经很好的熟悉了《七氟丙烷灭火系统设计规范》。对《火灾自动报警系统设计规范》和安全疏散等方面的知识也有了比原来更深的认识和理解。加深了七氟丙烷灭火系统的设计计算和设计方法。而且还强化了消防工程的预算编制技术。尤其重要的是毕业设计培养了我仔细认真,坚韧严谨的科学态度和虚心求教的精神。更加深了我对工程设计工作的热爱。
在毕业设计期间,得到了张银龙教授的悉心指导,张老师的指导使我的毕业设计更加完善。王智慧同志对我的初进行了详细的审核,并进行了部分稿件的文字录入和定稿后的核稿工作。在此对他们深表感谢!
7.参考文献
⒈国家技术监督局、中华人民共和国建设部《电子计算机房设计规范》(GB50174-93)1993
⒉深圳市消防局、天津消防科学研究所《七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范》
⒊中华人民共和国公安部《火灾自动报警系统设计规范》(GB50116-98)1998
⒋蒋彦、雷志明《新型气体灭火系统(卤代烷替代物)设计手册》中国环境科学出版社1999.8
⒌《消防科学与技术》
⒍《消防产品与信息》
⒎中华人民共和国公安部《建筑设计防火规范》(GBJ16-87)1988.5.1
⒏中华人民共和国公安部
《高层民用建筑设计防火规范》(GB50045-95)2001
⒐四川造价管理总站《全国统一安装工程预算定额四川省估价表》SGD-5-2000
- 上一篇:企业年金制度问题意见
- 下一篇:产业结构调整扶持制度