环境化学教学内容设计论文

时间:2022-05-26 10:36:14

导语:环境化学教学内容设计论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

环境化学教学内容设计论文

摘要:随着生态环境的日益恶化,人们的环保意识日渐增强。在环境化学的教学过程中,案例教学因其所具备的趣味化及形象化特征发挥了不可替代的作用。纳米传感器作为最近几年来新产生的一种环境分析检测技术,不仅能够运用于现场原位及污染物质的检测中,而且可以引入环境化学的教学过程中。本文详细叙述纳米传感器与环境化学教学的密切联系,介绍将纳米传感器融入环境化学教学的必要性,对提高学生的研究能力,激发学生的学习兴趣具有非常重要的理论意义及现实意义。

关键词:环境化学;教学;纳米传感器

随着社会的发展以及经济水平的提升,环境问题日渐凸显,社会需要大量具备科学环境知识的高素质人才,所以高校肩负着塑造大批环境类人才的使命。在众多高校的课程体系中,环境化学课程占据着不可或缺的地位。环境化学课程主要探讨的是化学污染物质在环境介质中的存在、化学性质、行为及控制的化学原理等。新诞生的纳米传感技术涵盖的知识面广泛,并且具有全面性和综合性,将其融入于课程的教学中,可以显著提升教学效果。在环境化学现存的教学工作的基础上,紧密地结合学校自身的办学特点,是提升教学质量的重要措施之一。

1纳米传感器概述

1.1纳米化学及生物传感器

在化学及生物传感器领域融入纳米技术,有效提升了生物传感器及化学的检测性能,推动了新型化学及生活传感器的诞生。由于具备了亚微米的尺寸、换能器及纳微米系统,大大提升了该传感器的物理、化学性质对细胞的检测灵敏度,检测的反应时间也有了明显的减少,而且可以实现高通量的实时检测分析。使用纳米材料所制成的非常灵敏的生物及化学传感器,能够早期诊断癌症及心血管疾病。使用碳纳米管及其他纳米微结构的化学传感器可以检测出氧化氮、过氧化氢、碳氢化合物及挥发性有机物等。和其他具备相同功能的分析仪相比,其不仅尺寸很小,而且价格非常便宜。在生物传感器当中,使用纳米颗粒、纳米器件及多空纳米结构均获取了成功[1]。

1.2纳米气敏传感器

构成纳米气敏传感器的敏感材料有很多种,主要包括碳纳米管、二维纳米薄膜及金属氧化物半导体纳米颗粒等。在纳米气敏传感器的研发过程中,最主要的方向就是在气体环境当中,依靠敏感材料的电导发生变化来制造气敏传感器。将一些珍贵金属的纳米颗粒,融入于纳米敏感材料中,可以有效增强选择性,提升灵敏度,并且降低工作温度。纳米气体传感器的另外一个方向是,采用多壁碳纳米管来制作气敏传感器。1991年,碳纳米管这种材料被初次发现,由于独一无二的性质和制备工艺,得到了研究者的广泛应用。而且多壁碳纳米管具有极强的吸附能力,因为吸附的气体分子和碳纳米管所产生的相互作用,可以改变宏观电阻,根据电阻的变化来检测气体成分,可以充当气敏传感器[2]。

2纳米传感器在环境化学教学中应用

2.1将纳米传感器融入环境化学教学的必要性

在中国地质大学,环境专业不仅是其中的热门专业,也是特色专业之一。对于环境化学课程的设置,一直坚持着学校“特色加精品”的教育理念。将一些全新的技术元素及概念融合于以往环境化学课程的教学模式中,会给课程注入许多生机与活力。环境化学的研究内容纷繁复杂、千变万化,其中主要包括检测和识别环境污染物质,污染物质在空气、水、泥土及生物体中的迁移变化、去除机理等。在此之中,对污染物的分析与检测一直处于研究的上游阶段。因为唯有精确、高效地检测出污染物的浓度与存在方式,才可以给出有效准确的评价,并且制定出对污染物质进行高效处理和防治的有效措施。所以,在环境化学的实际教学过程中,环境分析化学的内容具有不可或缺的作用[3]。随着经济水平的提升,环境污染物的种类也在日益增多,而人们也在不断地开发新的技术与材料,应对这些层出不穷的环境问题。在这样的环境下,纳米传感器应运而生,其最主要的核心作用就是对环境进行监测及分析。总之,化学是一门内容丰富的综合性学科,其中融合了环境分析、新材料的使用以及污染控制技术等。而纳米传感器主要由化学传感器、生物传感器两部分组成,所能监测的物体主要涵盖了气体、固体、液体、温度及压力等。所运用的材料除了碳与金属之外,还有新合成的材料。所以,纳米传感器技术传达的核心知识点和环境化学课程的核心内容存在着千丝万缕的联系,可通过科学的设计及合理的导入,拓展教学范围,提升教学质量,实现最理想的教学效果[4]。

2.2特色案例教学设计

在环境化学课程的教学过程中,会牵涉到环境分析化学的主题,随之也会提及环境污染物最新的检测技术与方法。此时便可以介绍一些以纳米传感器为基础的快速检测污染物的相关知识。并且根据有关的电分析化学理论,当物质发生氧化还原反应时,在电极表面及分析物之间会存在电子转移,通过对电子转移的捕捉,对电信号(电流值和电压值)及特征值进行定量及定性分析,从而获取目标浓度及电子转移数二者之间的一个定量关系,从而可以准确地将目标物的浓度检测出来。一般该技术所需的设备体积小,容易操作,对现场进行分析检测时更加方便。这样的介绍不仅可以让学生更深入地了解纳米传感器的核心技术、主要原理,激发学生的学习积极性及学习兴趣,而且可以有效传递现阶段纳米材料在环境分析化学范围的应用等有关知识,开发学生的创造性思维[5]。案例的展示加上丰富多彩的多媒体课件,结合电分析化学仪及电极等实物,力求做到绘声绘色、动静结合。此外,对一部分许多学生都充满兴趣的话题进行交流和讨论,将全班的学生分为若干个小组,进行5~10min的讨论,然后每个小组派一个代表进行发言,分别叙述自己的观点。这样在营造良好课堂氛围的同时,还可以节约大量的时间,提升教学的质量和效率,事半功倍。现详细介绍使用碳纳米管传感器检测环境水样中的农药百草枯试验。

2.3试验部分

2.3.1仪器与试剂

多壁碳纳米管(<10nm,纯度>95%,长度在0.5~500μm),超声非常均匀地分散于N-二甲基甲酰胺中(5mg/mL),市场上售卖的百草枯,磷酸缓冲溶液(PBS):使用0.1MNa2HPO4和0.1MNaH2PO4配置。全部的化学试剂皆为分析纯,试验用水是二次蒸馏水。方波伏安法及循环伏安法都在CHI660b电化学工作站上进行。并且采用三级系统,分别为铂丝电极为对电极,碳纳米管修饰电极为工作电极,饱和甘汞电极为参比电极。测试底液为磷酸缓冲溶液,每次测试之前都通氮除氧10min,在试验过程中始终保持氮气氛围,试验操作在温室下进行。

2.3.2纳米传感器的制备

把玻碳点击表面用1.0、0.3、0.05μm的氧化铝粉抛光,然后依次用水及酒精超声清洗之后,在0.1MH2SO4中与-1.0~1.5V电位的范围内反复扫描,直到电流稳定下来为止。使用氮气把电极表面吹干,使用微量注射器吸取2μL多壁碳纳米管DMF溶液,浓度为5mg/mL,均匀地滴落于干净的电极表明,利用室温将其挥发干[6]。

2.3.3方波伏安法检测环境中的百草枯

百草枯可以非常稳定地存在于酸性或者中性环境中,但是在pH值大于12时,便会发生水解,试验检测了在不同的底液中,传感器对相同剂量的百草枯的响应电流,比如磷酸缓冲溶液、硼砂、Na2HPO4柠檬酸及邻苯二甲酸氢钾等。结果表明,在磷酸缓冲溶液当中的响应电流最大,以下试验选用磷酸缓冲溶液为测试底液。pH对百草枯在修饰电极上的方波伏安响应存在一定的影响。当底液pH比较小时,响应电流就会随着pH的增大而增大,在中性底液中变为最大值。在碱性条件下,电流值会下降许多,所以选择pH值为6.8。预富集电位对百草枯方波福安响应也存在一定的影响,预富集电位在0.1~0.4V时,响应电流会随着电位的负移而逐渐增大,这主要是因为百草枯带有正电荷。然而,当预富集电位小于-0.4V时,响应电流开始逐渐下降,造成这一现象的主要原因是预富集电位非常接近百草枯的氧化还原电位,少许的百草枯被氧化还原了,所以试验选择预富电位为-0.4V[7]。尽管百草枯响应电流会伴随着预富集时间的增大而增大,但是时间过于漫长的话,会导致百草枯产生光分解,所以响应电流反而会下降,所以实验所选择的预富集时间为2min。维持试液当中的百草枯浓度是5.0×10-6M,将浓度不一致的干扰物质加入其中,考察一些共存的有机化合物,比如莠去津、邻苯二酚对方波伏安检测百草枯的干扰情况。倘若信号变化超过10%,则视为有干扰。结果显示,邻苯二酚的干扰最大,浓度若超过百草枯的100倍,就会引起干扰。如果是其他的重金属离子,比如Zn2+、K+,浓度需在1000倍以上才会引发干扰。所以,MWNTs-GC修饰电极对百草枯具有极强的选择性,不容易受到其他物质的干扰。在校园附近取少量湖水,静置2h,然后用稀盐酸或者氢氧化钠将pH值调节至6.8,在磷酸缓冲溶液中用方波伏安法对实际样品进行检测。检测结果如表1所示。从表1可以看出,在这种方法的检测范围之内,校园的湖水样品当中并不含百草枯成分,进而表面湖水并没有被百草枯所污染。维持试液当中的百草枯浓度为8.3×10-6M,使用方波伏安法用MWNTs-GC修饰电极连续测定5次,标准偏差为1.3%左右。将测定之后的修饰电极保存于0.1MpH6.8PBS当中,30d后,使用其测定含有8.3×10-6M的底液,响应电流仍然保持过去的95%,这也进一步表面纳米管在电极上结合得十分牢固,而且性质也十分稳定。

2.4纳米产品的开发及案例教学的课堂实践

因为纳米技术及其材料具备多样性特征,评估其对环境所产生的影响,需要采用可适应多种条件的传感器。所以,在将来的3~10a,需要开发出评估纳米材料暴露在空气当中影响的仪器。现阶段频繁接触纳米材料的人,都急需价格低廉且便于携带的样本收集器,从而测量工作环境当中纳米材料的暴露情况,主要包括比表面积及数量等。这种仪器需要在未来3a内商业化。纳米产品在制造过程中所产生的废物,比如防晒油这种液体消费品当中产生的纳米颗粒,一定会在水中堆积,不对这些废物进行追踪,就无法确定纳米颗粒存在的好坏。所以,必须在未来5a开发追踪纳米颗粒在水中聚集及转化情况的仪器[9]。笔者在高校环境化学课程的实际教学过程中,把纳米传感器的基础知识、研究心得及实际经验融入于具体的教学过程中,对教学质量的提升发挥了良好的推动作用。比如,在环境化学课程中,讲述环境污染物质的检测环节时,介绍了碳纳米管、石墨烯及碳纳米纤维等纳米材料充当以电分析原理为基础的传感器材料的优势。与其他材料相比较可知,碳纳米材料具备非常大的比表面积、良好的导电性、便宜的价格,而且易于修饰成各种外形,有助于蛋白质或者酶等生物性物质与碳纳米材料融合,从而构建出高效生物传感器。这些介绍可以让学生直观全面地了解到碳纳米材料在传感器中的使用。并且根据现存的理论结合实际的教学思路,对教学内容发挥拓展及延伸的作用[9]。除了上述几点之外,在简介如何灵活运用纳米传感器检测水环境中的污染物质时,牵涉到了电子转移理论及电化学反应,并且详解讲述了传感器的工作原理及传感器的种类。这样可以向学生讲述纳米电化学传感器,是基于特异性点分析化学反应基础的知识点,并且详细介绍了膜状电极、芯片传感器及柱状电极等多种不同形式下的具体作用方法,生动具体地展现了纳米传感器检测污染物的整个过程。在拓展教学内容的形式及内容时,对环境化学教学的发展起到了有效的推动作用。每当在讲述这些具体案例的过程中,学生都兴致蓬勃,充满了热情,甚至进一步激发了许多学生的想象力及好奇心,自己也想亲自参与到纳米传感器的开发及应用过程中来。所以,作为一个生动有效的教学载体,纳米传感器推动了环境化学课程教学质量的提升。在未来的教育教学实践工作中,笔者必须进一步丰富教学经验,并且让教学方法更加科学完善[10]。

3结语

将纳米传感器应用于环境化学的教学过程中,有助于培养学生主动分析问题及处理问题的能力,提升教学质量。随着此项技术的不断发展演变,可以把更多有价值的信息以案例教学的模式导入环境化学教学的过程中,不仅可以激发学生对该项技术的兴趣,还可以使纳米传感技术得以进一步发展,形成良性循环。在未来的环境化学课程的教学中,应深入探索,总结经验,进而提升教学的质量。

作者:周林宗 单位:楚雄师范学院地理科学与旅游管理学院

参考文献

[1]余会成,黄学艺,李浩,等.纳米氧化铜修饰的苯巴比妥分子印迹传感器的制备及其电化学性能[J].物理化学学报,2014,10(11):2085-2091.

[2]段静,卓莎,姚付军,等.基于MspA蛋白质纳米孔传感器的主客体化学研究[J].分析化学,2016,44(12):1801-1807.

[3]田力,韩鑫,张纪梅,等.基于能量转移的荧光纳米传感器研究进展[J].天津工业大学学报,2013,12(6):49-54.

[4]曹培江,彭双娇,韩舜,等.ZnO纳米/微米结构传感器对乙醇气敏性研究[J].发光学报,2014,35(4):460-464.

[5]黄晓玮,邹小波,赵杰文,等.新型室温硫化氢纳米传感器的制备及性能[J].高等学校化学学报,2014,12(6):1175-1180.

[6]胡杰,王勇,倪永年,等.基于层状二硫化钼纳米片比色检测亚锡离子[J].高等学校化学学报,2016,37(3):448-453.

[7]王君,周洁,许迎科,等.基于纳米RuOx的微型电化学胰岛素传感器[J].电子科技大学学报,2015,12(1):155-160.

[8]胡耀娟,黄梦丹,陈昌云,等.微波辅助法制备氢氧化镍-石墨烯纳米复合结构及在葡萄糖检测中的应用[J].高等学校化学学报,2016,37(3):468-474.

[9]周必武,张朝晖,蒋映权,等.石墨烯/纳米钴增敏对特辛基苯酚印迹传感器研究[J].分析化学,2015,12(11):1716-1721.

[10]余会成,黄学艺,韦贻春,等.纳米氧化铜掺杂的苯巴比妥分子印迹电化学传感器的制备及其识别性能研究[J].分析化学,2014,12(11):1661-1666.