铁路工程地质信息管理论文
时间:2022-10-24 03:40:06
导语:铁路工程地质信息管理论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
实现集成化,首先要了解铁路行业工程地质勘察特点和工作程序。图1比较客观地反映了铁路工程地质勘察所要经过的工作流程。它包含了外业调查和内业整理两部分工作,两者有时需要交叉进行。图1中显示,铁路工程地质勘察涉及的工序较多,过程较为复杂,服务的专业较多,满足的要求也不一样。
2工程地质勘察信息
集成化的前提应是信息化。实现系统集成化的途径就是要以信息为纽带,通过信息的传递和作用,贯穿勘察整个周期。因此,信息的组织和管理在集成化中起着关键作用。一般工程地质信息包含的内容是多方面的。就铁路工程地质勘察而言,按工序可分为前期信息、中期信息和后期信息。前期信息多为指定性和任务性信息,包括勘察大纲、各种勘探点事前指导书(任务书)、岩土水试样试验委托书等;中期信息一般为中间成果信息和过程信息,有勘探点成果图表、野外调查的观测点表、岩土水试验报告、物探报告等;后期信息以成果文件为主,含工程地质平面图、工程地质纵断面图、各种类型的汇总表、计算表单、各类工程勘察报告或说明、工程地质勘察总说明等。总之,信息十分庞杂也十分多样化。集成化的目的就是为了信息的有效利用、有效管理。为了达到集成化,就必须实现铁路工程地质勘察过程信息化,信息化的前提显然就是信息必须存储。因此,首先着重考虑了各期信息存储的方式和内容、信息传递途径以及信息作用的方式。
2.1信息存储
工程地质勘察有关信息类型无外乎有3种:文本型信息、数值型信息和图形信息。不同信息存储的格式和目的有所不同。而且实际工作中,需要将不同类型信息整合在一张表上,如勘探事前指导书,既含文本型信息,如技术要求,又有数值型信息,如孔深、里程、坐标;观测点表和岩心鉴定表中既含文本信息,如地层描述,又含图形信息,如素描图和岩心柱状图。
2.1.1文本型信息
文本型信息包括word、excel及txt格式文件,多是一些描述性和说明性的信息,它必须与其他数值型和图形信息一起使用才有意义。存储的目的主要是便于以后查询、浏览以及与其他信息合并组成一种规定的格式,以便整体输出。
2.1.2数值型信息
数值型信息主要包括数字、术语、符号和excel格式文件,这类信息用途最广。存储的目的是为了后期查询、核对、纠错、调用、汇总、统计、计算时方便调用。哪些信息需要按数值型信息存储是根据后期需要来确定的。
2.1.3图形信息
图形信息包括照片、CAD图等。存储的目的是为了后期调用、修改,同时也为了与数值型信息和文本型信息有关联性,如一张照片的里程位置,CAD图中所涉及的勘探信息、计算结果等。
2.2信息传递
各部分相互间的联系就是通过信息传递来完成的。信息传递既有单向的,又有双向的。需要信息传递的内容均设为单独字段。单向传递的多为文本信息,如描述性的内容;双向传递的多为数值型信息,如里程、坐标、试验数据等。图形信息既有单向的,如平面图中的符号、小柱状图等;也有双向的,断面图中的静探分层等。单向信息传递按工作流程设计,其目的就是为了简化人工干预、提高工作效率和准确性,为此,可以设置信息字段的继承性、递增性,避免重复输入。双向传递是根据后期信息结果反馈给前期信息库进行核对和修改,然后再返回到后期信息。如砂土的定名、黏性土的稠度、粉土的密实程度和潮湿程度等,野外定名和试验室定名有时不一致,就需要根据试验室定名来修改野外定名,即根据试验室定名自动修改前期相应字段内容。平面图勘察点的里程、坐标换算、顺号、换号等也是信息双向传递的典型例子。
2.3信息作用
信息作用和信息传递是分不开的。大部分字段都是根据信息作用设置的,如钻探事前指导书中设定孔深、是否取样等为单独字段,就是为了实际完成后进行核对是否按指导书要求的孔深进行,是否进行了取样。信息的主要作用反映在后期信息处理上,如统计、汇总、滑坡计算、沉降计算、湿陷计算、节理统计、赤平投影等。
3系统介绍
3.1系统概述
系统建设的目标是建立和铁路勘察工作业务流程相符合的工程地质信息管理与应用系统,以数据管理为核心,包含野外勘察、资料整理、资料提交等内容,实现项目内数据库管理、平面图编辑、断面图编辑、统计分析、计算评价、专业接口等功能,使系统实现集成化、信息化和智能化,提高工作效率和工作质量。
3.2系统功能架构
本系统包括了工程地质勘察所需的大部分功能,从数据录入到提交相关专业的数据接口,都在本系统内完成。为保证与项目有关的内容都能方便管理和查询利用,系统设计时就按上节讨论的信息内容依据不同的目的和用途放入数据库中进行管理。基于集成化的考虑,本系统主要包含了项目管理、数据录入、数据管理、平面图编辑、断面图编辑、计算分析、统计汇总、辅助工具、出图管理、接口管理等模块组成(图2)。其中的计算分析工具也将大部分常用的工程地质计算方法,如赤平投影图,纳入到系统中,以便充分利用数据库进行有关分析计算(图3)。
3.3系统集成特点
3.3.1勘察管理功能的集成
(1)项目管理系统实现对项目内的信息按勘察设计阶段、勘察起始时间、勘察分段、方案勘察进行分类管理,具体的应用都是在方案下进行的。同时考虑了其他项目资料、其他段落资料、其他方案资料的引用管理。也考虑了不同段落、不同人员、不同方案下资料的归并管理。通过各种项目管理方式,可以实现一条铁路线的工程地质勘察信息一体化,方便勘察信息的归档管理。该系统的项目管理方式也是类似软件中首次使用。(2)数据管理系统基本将整个勘察过程中发生的所有资料进入数据库并进行有效的管理,数据库包括了现场信息数据库、勘察点数据库、土工试验数据库、设计文件数据库、工点资料数据库、平面图和断面图数据库等。值得一提的是,系统首次将现场管理、内业资料整理、分析计算、统计汇总、出图管理、数据接口等进行了集成。实现了对野外勘察工作中有关工序文件的管理,包括钻探事前指导书、试坑事前指导书、原位测试事前指导书、物探事前指导书、土岩水试验委托书等;实现了各种图的图纸选择、自动分页、批量出图的管理。
3.3.2图形编辑的集成
系统中设计图形编辑的内容很多,包括岩芯鉴定表、原位测试成果表、观测点表、平面图、断面图、剖面图等。前两种在自主平台上实现图形编辑和生成,彻底避免了过去在AutoCAD下出图顺序难调、批量出图困难的缺点,也方便了资料的顺序归档。观测点因编辑量较大,主要依托AutoCAD进行编辑,然后依靠系统生成pdf图,实现批量生成和出图。平面图和断面图编辑主要是利用AutoCAD功能,充分利用勘察点数据库,实现图形的部分内容自动填绘,图上查询数据库,智能连层,并到达断面图接口数据生成的目的。总之,图形编辑的集成是信息化的基础上进行的,是靠信息的传递实现了图与数据库的有效串通。
3.3.3分析工具的集成
分析工具由计算、统计、汇总、分析四部分组成。计算包括滑坡计算、地基沉降计算、桩基计算、黄土湿陷计算、液化判定、盐渍土计算等功能,后三种能实现成批计算,并将计算结果放入相应勘探点数据库,以便后期统计、汇总。统计有工作量统计、节理统计、地基土的物理力学参数统计等。分析主要为赤平投影图。
3.3.4专业协作功能的集成
(1)与勘探和土工试验的协作勘探包括钻探、试坑、原位测试等内容。勘探作业人员可以只录入最原始的数据,后期由地质人员根据需要进行整理,这样就保证了数据的真实性,也方便了在此基础上的二次分析整理。更重要的是提供了各种勘探成果图表的生成和输出功能。地质人员可根据实际需要,调整静探分层位置,重新计算各层参数等。系统明确了土工试验数据的接口标准,依据试验结果,自动对勘探数据进行校核。依据事前指导书和试验委托书,对勘探取样数量和质量进行比对,以方便地质人员监控勘探质量。(2)与上、下游专业的协作系统提供了对其他专业提供图纸的一系列数字化处理功能,从而使地质专业在同一张图纸上进行本专业的工作,并确保空间上的统一。同时,随着上游专业图形的变动而变动,如线路方案的调整引起的各种地质内容里程的变化。地质专业产生的成果提交给其他专业时,同时提交标准格式的数据接口文件。
3.3.5行业标准的集成
铁路工程地质勘察不仅要执行铁路行业制定的规范标准,而且还要针对改移公路、房屋建筑执行公路行业和工民建地基勘察相应的规范和标准。因此,本系统在基础数据录入、图形的生成也一并进行了考虑,用户使用时根据需要选择即可,无需再用其他软件完成。最重要的是实现了数据的共用。
3.3.6系统设置的模板化
模板化也是系统集成化的一种体现。本系统秉承系统设置模板化的先进做法,把一些通用的图表、符号设置为标准模板,集成在系统中,使整个系统图表输出和符号标注保持统一,也为用户个性修改提供了条件。如岩芯鉴定表,试坑鉴定表,原位测试成果表,各种统计汇总表,地层时代符号标注、各种计算表单等,用户可以根据自己的需要设置编辑,而不用再修改程序代码。
3.3.7功能实现的灵活性
长大铁路线的工程地质勘察,会遇到各种各样的问题,即使同一类问题因条件不一样也会出现不同的情况,要求采取不同的解决方式。如果有线路的中线数据和断链数据,在图下即可完成坐标里程换算;如果没有中线数据,则可利用CAD图进行。平面图上的地质小柱状图填绘既可人机交互完成,也可利用既有勘探资料自动生成。地质产状既能人机交互标注,也能读数据库自动解决。最具特色的就是在系统的任何位置都可很方便地查询到勘察数据中的内容。
3.3.8辅助工具的集成自然界地层种类繁多,因工程目的,命名和表示方式也不尽相同,系统不可能开发出所有地层花纹、地层时代成因符号、岩性符号、地质线型、不良地质和特殊岩土符号等。本系统以集成辅助工具的方式有效地解决了系统符号、线型、花纹不足的问题。这也是同类软件中的首创。
3.3.9对BIM技术的支持随着BIM技术在各个领域的持续走红,近年来铁路行业也在大力推广BIM技术的应用。作为最重要的基础信息,铁路工程地质信息模型的建立也势在必行。本系统为实现铁路工程地质信息模型建立已经打下了坚实的基础,其庞大的数据库为模型建立提供了强有力的支撑,信息化的二维断面图为模型信息的传递提供了有力的帮助。一旦三维地质建模技术成熟,将具备快速建立地质BIM模型的能力。
4应用实例
本系统不仅已在多个铁路项目中得到应用,而且还在公路项目勘察中发挥了巨大作用,尤其是系统中的里程、坐标换算,自动顺号、统计汇总、计算等使地质人员从繁琐的数字处理中解脱出来,极大地提高了工作效率。下面以西安至铜川城际铁路可研勘察为主,介绍系统使用效果。西安至铜川城际铁路长110km左右,可研阶段的项目管理结构如图4所示。由图4中可以看出,项目管理是以设计阶段为一个完整周期考虑的。这样考虑的原因是铁路工程地质勘察涉及的数据量非常巨大,如果将各个勘察阶段放在一个库里管理,会影响计算机处理速度,甚至无法启动。可研(初测)阶段就划分为一个段落,主要有3个方案,每个方案下包括从任务下达到资料提交整个周期内的各种勘察内容。所以,勘察数据是以方案为依托进行管理的,所有勘察信息都是基于线路方案进行存储和管理的。图4项目管理结构西铜城际铁路从西安北客站引出,与郑西、大西客运专线铁路并行几公里后跨渭河北上。所以,需要大量引用郑西、大西客运专线的勘察资料。本系统导入其他线路勘察资料功能就提供了很大的方便,使我们顺利地将郑西、大西客运专线勘察资料导入到西铜城际铁路勘察数据库中。大量的钻孔、静力触探、试坑等勘探任务都是通过该系统直接生成下达,基本是一气呵成,并存入系统,后期很方便地查阅。观测点、钻探、试坑、静力触探等输入基本符合规范要求和单位工作习惯,重复内容的继承性和递增性极大地减少了操作人员的工作量,尤其是自主平台的成果图表输出更是克服了过去不能成批完成的缺点,最重要的是可以人为控制排列顺序,使输出按用户要求的顺序完成,大大降低了工作强度,提高了工作质量。此外,分离出来的一些内容,如黏性土的塑性状态、粉土的密实程度和潮湿程度、砂土及碎石类的潮湿程度和密实程度、岩石的层理产状和节理产状,以及湿陷性、液化判定结果等都为后期信息的分析、计算提供了必要条件。西安至铜川城际铁路主要走行于黄土塬上,黄土湿陷是其遇到的主要工程地质问题,所以,针对大批量的湿陷计算,该系统只一键完成铁路工程地质勘察最为繁琐的是各种勘察点和地质产状的标注。本系统充分发挥了集成化的优势,一键完成从数据库调用勘察点、地质产状,并自动按坐标标注到平图上。同时完成顺号、里程计算等回馈到数据库。仅此一项,提高工作效率达70%以上。此外,本系统在广西资兴高速公路详勘项目的应用也集中体现了标准集成的好处。资兴高速公路全长82km,详勘加上利用的初勘资料共计有1200多个钻探、500余个观测点、100多个试坑、千余张照片,涉及的工程有500多个桥、隧道、路基工点等。系统对此都进行了有效管理,实现了里程坐标换算、编号顺号、纸上布孔、平面图勘察点及产状标注、断面图勘探点标注、工作量统计等自动化。实现了各种地质符号标注、断面图地层连层及标注等的智能化。节理统计和赤平投影的功能为地质人员分析岩体稳定性提供了有力的帮助,极大地提高了工作效率和质量。在此公路上的应用也充分说明了该系统标准集成的成功。
5结语
(1)集成化使信息管理和应用有机地结合在一起,避免了信息的重复输入,提高了信息的利用效率,保证了信息的通畅交流,减轻了地质人员的工作量。(2)信息的集成化有助于对铁路工程地质巨大信息量的有效管理,使不同段落、不同人员的工作得到合理的归并成为一个整体,为单位勘察信息的有效管理提供了有利的条件。(3)工程地质勘察信息的分门别类管理特别适合于铁路行业线长、分段实施、参加的人员众多、勘探种类繁杂的特点。(4)图形信息化和数据接口的形成,都为工程地质BIM应用提供了坚实的基础。
作者:于国新单位:中铁第一勘察设计院集团有限公司
- 上一篇:高职物业管理专业英语的教学模式
- 下一篇:当前图书馆知识管理论文