医学信息学研究论文

时间:2022-12-16 10:20:00

导语:医学信息学研究论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

医学信息学研究论文

信息技术在医疗机构正日益受到重视,并得到广泛应用。如何利用信息技术更好地为医院的医疗、科研和教学服务,已越来越为人们所关注。医学信息学即在这种背景下应运而生,国际上将其定义为“一门涉及医学实践、教育、科研中信息加工和信息交流的学科”[1],是医学、计算机学、人工智能、决策学、统计学和信息管理学的新兴交叉学科。本讲座着重介绍医学信息学研究的最新进展,包括电子病历、医院信息系统、决策支持系统、影像信息技术、远程医疗与互联网以及数据标准。

一、计算机化病历

计算机化病历是医学信息学的一个重要研究方向。它是指存在一个系统中的电子病历,这个系统可支持使用者获得完整、准确的资料;提示和警示医疗人员;给予临床决策服务;连接管理、书刊目录、临床基础知识以及其他设备[2]。电子病历的优点如下:完整的电子病历存储系统支持多个用户同时查看,保证个人医疗信息的共享与交流。通过网络,医师可以在家中或在世界任何一个角落随时获得患者的电子病历。同时可根据不同的用户给予不同的资料查询权限,从而保证了病历的安全性。授权用户在适当时间才能查看合适的病历。

此外,电子病历不再是一个被动的医疗记录。论文通过与图像信息的整合,可提供实时医疗监控,药物剂量查询等多种功能。电子病历已成为新兴信息技术和信息工具的基础。

电子病历目前可大致分为单机电子病历和网上电子病历两种。网上电子病历的优点是采用了ASP服务器提供全球性服务,安全性与数据完整性则由ASP供应商解决;缺点则是数据不在医师所工作的计算机上。

虽然医疗界投入巨资,电子病历仍存在许多问题亟待解决[3]。首先,病历数据的输入界面仍不够简单;其次,电子病历需要统一的医学用语标准。目前,美国国家医学图书馆已制定出统一医学用语系统(unifiedmedicallanguagesystem,UMLS),这一系统包含了近一百万个术语描述医学概念。一旦该系统得以推广,将极大地促进全球医学用语的标准化。

二、医学信息系统

医学信息系统与其他工业系统有很大的不同。毕业论文不同的部门对信息的要求不同,这是对医学信息系统最大的挑战。例如,信息系统用户可分为基本用户和二级用户,基本用户包括医师和其他护理人员;二级用户则包括医疗保险公司、政府医疗保险机构等。不同用户需要的信息不同,导致信息管理的复杂性。同时,如何有效地利用不同的信息系统解决不同的医疗管理也日益成为人们重视的课题。

信息系统包括实验测试系统、医疗设备订购与维护系统及影像图片存储与交换系统等,存储于不同的计算机和不同的信息网络中。对于特定的用户来说,前端界面可能有所不同,但是后端数据必须是一体化和标准化的。

医学信息系统包括企业资源规划系统(ERP)、患者关系管理系统(patientrelationshipmanage—ment,PRM)、数据挖掘及决策支持系统等|4J。ERP技术在商业领域取得巨大成功,近年来,其在医疗机构中也得到广泛应用。其特点是将企业信息整合为一体(整合的数据库),所以各系统都提供一致的数据。一次输入,多次使用,有效地降低了输入费用,并保证各系统得到完整、实时、一致的数据。其次,ERP系统可用来决策医疗设备订购、管理和维护,例如通过一个整合的数据库,根据病床的使用率,ERP系统可自动选择最合适的时间对医疗设备进行维护。PRM是侧重于患者需求的信息管理系统。PRM记录患者生活习惯、个人病史、家庭病史以及过敏反应等,医院从而可提供更加个性化的医疗服务。同时通过PRM,患者也可向医院询问医疗方案。数据挖掘技术在医疗管理上也日益重要,这种技术的主要优点是降低成本,为医师提供最有价值的信息,从而提高医疗诊断的质量。Bresnahan[5]指出,上千种的服务、多种治疗方案以及相互关系使信息系统越来越复杂,而这种复杂性推动了数据挖掘技术在医疗上的使用,已远远超过其在银行业和零售业的应用范围。

三、医疗决策系统

医学实践最重要的是作出正确的医疗诊断,因此医学信息学将研究重点也放在决策系统上。硕士论文决策系统不仅需要先进的信息科学技术和工具,而且需要理解医师如何利用推理知识作出医疗判断。

当前决策系统主要基于两种方法论:着重于统计分析的定量分析法,以及侧重于逻辑推理的专家系统法。定量分析法产生于上世纪50和60年代,主要用于解决心脏疾病和异常疼痛等临床问题。早期系统以概率决策理论为解决问题的依据。最新的此类系统以美国Stanford大学PANDA项目最为著名[6]。PANDA项目使用了决策分析技术,主要应用于胎儿期诊断,根据概率分析方法对胎儿期中的问题作出最有利于患者的选择。专家系统法以逻辑推理为解决问题的核心。最著名的第一代专家系统是MYCIN系统[7]。此系统主要用于对多种传染病的诊断和治疗,其中的医学知识不是包含于工具中,而是存储在规则中。第二代专家系统则以Asgaard系统最为成功[8]。系统大大扩展了MYCIN的功能,并补充了一系列的推理方法,其中包含了所有相关领域中的复杂知识。通过与数据库的连接,系统可自动提取带有时间标志的数据,而这种功能则使系统可针对某个患者作出特定阶段最适合的治疗方式。另外通过反溯法可比较不同的医疗护理,并作出相应的质量报告。

四、影像信息学技术

自上世纪70年代中期,以计算机为基础的医学影像学随着数学、生物物理学和工程模型学蓬勃发展起来。但是由于各类学术会议侧重于影像,而忽视了信息学,导致医学影像信息学科发展缓慢。

直到近年,界面友好的医学影像数据库与二维、三维结构及可视化的结合将医学影像信息学带入了一个崭新的时代。开始于1990年的“可视人”项目提供了大量的人体模拟图像,这一技术的广泛应用带动了各类解剖学教育软件的开发,更为重要的是引发了关于模型、摸拟及大型数字化图像搜索等一系列的信息学问题。同一时间开始的“人类大脑”项目则直接导致了大量关于大脑数据图谱登记、分ShanghaiMedJ,2004,VoI27,No9区等课题的开展。新的信息学、生物计量学、计算图像学的结合,使人们重新认识到影像信息与模拟学的重要性。

现代影像信息学研究的重点包括图像传递标准、传递规则、医学术语、信息压缩、图像数据库索引及图像病例传递安全等。从“虚拟细胞”[9]到“虚拟人”[10],当前影像信息学从分子水平、细胞水平、组织水平到个体都得到广泛的应用。然而,医学信息学面临着更多亟待解决的现实问题。影像信息的完整化需要更深层的科学、技术和医疗实践的结合,包括对二维和三维图像自动分区与注册的新技术;数据抽象与概括;图像数据库中生物多样性来解释群体图像数据和表现型与基因型之间的关系;开发医学信息数据注释语言整合高级图像系统和医院信息系统等。

五、远程医疗与互联网

随着宽带网进入千家万户,远距离传递诊断和患者管理信息成为可能,远程医疗成为新的研究热点。通过网络电视和无线技术,使医师及患者能随时传递相应的医学相关信息,从而为远程医疗开创了更为广阔的应用前景。然而远程医疗昂贵的医疗费用使其现阶段只限于特定的人群。

互联网的出现提供了图片和文字传输的介质,而且为医疗机构提供了海量的信息数据。英语论文在互联网的帮助下,医师不仅可以全球共享医学资源,而且可以针对某一特殊病例进行广泛的交流。例如,美国国家医学图书馆提供医药在线(MEDLINE)数据库,其成员可查看、打印各类文献资料;医学网(CLINICWEB)则提供所有临床信息的索引,是医学界常用的搜索引擎。同时互联网的发展为一些身患相同病症人群的相互交流提供了可能,此类患者交流组织的形成有利于自我寻找最合适的治疗。

六、数据标准的重要性

电子病历和病案的大量应用、医疗设备和仪器的数字化,使得医院数据库的信息容量不断地膨胀。然而简单存储信息只是数据库的低端操作,数据的集成和分析以及医学决策和知识的自动获取才是信息学研究的重点。要对数据进行加工和分析,数据必须以特定的结构方式来存储。数据结构允许计算机轻易地传递符号和像素,并大大提高信息处理的速度。然而,这种数据结构不是仅由输入来决定的,医护人员必须有一约定俗成的数据标准,并为社会所公认。这一数据标准明确了数据库中存储的特殊符号所具有的涵义。其作用正如字典一样,起到咨询和定义的功能。数据标准又可分为文字标准和信息标准。

文字标准是指标准必须以文字形式表示,而不能以图像形式表达,国际上称为医疗数据系统,它包括一系列有特定涵义的单词。意识到标准的重要性,越来越多的医学和信息组织参与到此标准的制订中来。其中最著名的为美国病理协会制订的人类与兽类医学系统术语标准SNOMED和英国健康中心制订的医学系统术语标准ReadCodes。

信息标准则同时定义文字和图像数据。当今最通用的信息标准称为HL7(HealthLevelSeven),也可称为标准卫生信息传输协议,其中又包括医学数字化图像和传递标准(DICOM)。HL7标准确定了数据库系统中信息传递的顺序和格式,涵盖了实验测试术语、药品设备采购术语、收费术语、出院转院术语及电子监护术语等,并提供了一种类似于数据库的结构,利于患者信息在电子病历系统、实验室系统等多种数据系统中传递。

DICOM可明确图像在数据流传递过程中压缩和加密的格式,并确定CT图像或B超图像在数据库中存储的方式。

七、结语

医学信息学是计算机技术、生物物理学、统计学等与现代医疗结合的新兴学科,也是提高医疗服务质量、医院管理水平和降低成本的必然结果。这一学科需要多领域科研人员和医务工作者的大力合作。可以预见,不久的将来医学信息学将在医院管理、教学和科研、疾病的预防、诊断和治疗等方面发挥巨大和不可替代的作用,并将带动整个医学界的革新。

参考文献

1GreenesRA.ShortliffeEH.Medicalinformatics:anemerginga-cademicdisciplineandinstitutionalpriority.JAMA,1990,263:1114—1120.

2SteadWW.HalrlmondWE.Computer-basedmedicalrecords:thecenterpieceofTMRMDComput,1988,5:48—62.

3McDonaldCJThebarrierstoelectronicmedicalrecordsystemsandhowtoovercomethemJAmMedInformAssoc,1997,4:213—221.

4SiauK.Healthcareinformatics.IEEETransInfTechnolBiome-di.2003.7:1-7.

5BresnahanJ.Dataminging:adelicateoperationCIOMag(on-line).1997.

6OwensDK,ShachterRD,NeaseRF.Representationandanaly-sisofmedicaldecisionproblemswithinfluencediagrams.MedDecisiMaking,1997.17:241—262.

7YuVL,FaganLM,WraithSM,eta1.Antimicrobialselectionbyacomputer:Ablindedevaluationbyinfectiousdiseaseexperts.JAMA,1979,242:1279—1282.

8ShaharY,MikschS,JohnsonP.TheAsgaardproject:ataskspecificframeworkfortheapplicationandcritiquingoftime-on-entedclinicalguidelines.ArtifIntellMed.1998.14:29—51.

9LoewLM.SchaffJCTheVirtualCell:asoftwareenvironmentforcomputationalcellbiology.TrendsBiotechnol,2001,19:401—406.

10PandyMG.Computermodelingandsimulationofhumanmove-ment.AnnuRevBiomedEng.2001.3:245.273.