科学研究神华煤特性管理港口仓储论文

时间:2022-04-20 02:37:00

导语:科学研究神华煤特性管理港口仓储论文一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

科学研究神华煤特性管理港口仓储论文

编者按:本文主要从要搞好神华煤的仓储管理,必须先了解其自燃机理理论;神华煤的仓储管理两个方面进行论述。其中,主要包括:神华煤会发生复杂的化学和物理变化、大气氧化煤的氧化可用朗格缪尔的异相反应理论解释、水分水分使煤湿润,会提高吸附氧的速度、硫化物煤中硫通常以2种形态存在、变质程度低,表面积大,内部丰富的小毛细管造成了神华煤的内水高、制定合理场存量了解了神华煤的自燃机理、仓储管理要科学等,具体材料请详见。

神华集团有限责任公司的神府东胜煤田,属世界八大煤田之一。已探明煤田含煤面积3112×104km2,地质储量2236×108t;煤层埋藏浅,煤质好。

所产煤炭注册为神华煤,以低灰、低硫、特低氯、特低磷、中高发热量著称,并以易燃率高、煤耗低、低污染等优良的燃烧性能享誉国内外。但是,由于神华煤特定的成煤时期和成煤环境,也存在着一些缺点。主要是煤的着火点低,储存时易自燃。本文着重探讨如何做好神华煤在港口的仓储管理。

1要搞好神华煤的仓储管理,必须先了解其自燃机理理论

研究和大量的实验分析证明,神华煤的自燃主要是由硫造成的;变质程度低、内水大、含氧高、挥发分高、燃点低是神华煤自燃的次要原因。由于神华煤的含硫量非常低(一般小于015%),在研究神华煤的自燃机理时,往往忽略了硫的问题。

111神华煤自燃发火过程贮存过程中,神华煤会发生复杂的化学和物理变化,质量、氧含量、吸水性、着火点等升高,碳含量、氢含量、热值、结焦能力、粒度等降低。这些变化通常是由于氧、硫、水分的存在而引起。研究表明,煤的自燃,一般要经过3个时期,即潜伏期(也称准备期)、自热期和燃烧期。在潜伏期,煤体温度与周围环境温度基本没有变化,但煤的着火温度降低,化学活性增强。进入自燃期,煤的氧化速度增加,并分解出水、二氧化碳和一氧化碳。

氧化生成热使煤体温度开始升高。当煤体温度超过自热的临界值(60~80℃)时,煤温将急剧上升,氧化速度加快,并出现煤的“干馏”,生成碳氢化合物、氢及一氧化碳等可燃气体。煤温继续上升就进入燃烧期。当煤中易氧化的成分与空气中氧气发生复杂反应,且热量的产生速率超过煤堆热量的散失速率时,煤堆内迅速聚集大量的热量,煤堆内温度逐步升高;其化学反应速度加快,同时产生更多的热量,造成恶性循环,直至引发煤炭自燃。煤在氧化自燃过程中,不仅放出一定的热量,而且还热解放出CO、C2H4和C2H6等碳氢化合物,且分解的气体成分及其浓度与煤温之间有一定的对应关系。如果在井下,可直接检测空气成分,测量热解气体产物含量的变化,判断煤的自燃发展程度,以便进行火灾的早期预报。该方法称为指标气体法。

112大气氧化煤的氧化可用朗格缪尔的异相反应理论解释。氧分子渗入碳的晶格表面和碳粒孔隙所构成的内表面,因物理吸附络合在碳晶格的界面上。该吸附层仅为单分子层的碳氧络合物。

因其它分子的碰撞或由于受热分解作用而解吸时,形成的反应产物扩散到周围空间,碳晶格表面因而获得空位,再度吸附氧气。这种现象不断反复循环。上述只在吸附表面上进行的碳和氧的直接化学反应,称为一次反应。C+O2=CO2+4019×104kJ(1)2C+O2=2CO+2015×104kJ(2)在某种温度条件下,CO2与C发生还原反应,并吸收一定的热量:C+CO2=2CO-1612×104kJ(3)同时,当温度再升高,在靠近碳表面的气体边界层中的CO与O2相遇时,还会发生燃烧,生成CO2,并放出大量的热量:2CO+O2=2CO2+5711×104kJ(4)式(3)和(4)表达了碳与氧的一次反应产物在碳表面或表面附近空间的再反应,称为2次反应。常温下,煤能与空气中的氧反应。该氧化反应可长时间连续进行,且速度随温度的升高而加快。神华煤的水分高,更容易氧化。

这是因为,水分蒸发后,留下了大的可吸附表面。神华煤的变质程度很低,氧化速度快,氧化主要在煤的表面进行。煤的粒度越小,其表面积越大,自燃趋势也越大。特别是小粒级煤中夹杂一些其它粒级的原煤时,又增加了煤粒的空隙,使自燃的机会更大。碳和氧的反应为简单反应。根据质量作用定律,简单反应的速率,与各反应物的浓度以其化学计量系数为指数幂的乘积成正比。实验发现,当神华煤温度为15~30℃时,开始氧化;温度每升高8~10℃,其氧化速度就会加快一倍;在煤堆温度达到77℃时,氧化速度就相当快了;在温度达到138℃时,便放出CO2、CO和水蒸气,并放出大量的热;当温度达到200℃时释放速度加快,此时煤的自燃很快就要发生;当温度达到神华煤285℃着火点时,煤就会发生自燃。煤堆温度从77℃升到285℃大概要用20d。

113水分水分使煤湿润,会提高吸附氧的速度,同时,润湿热也显著,水蒸气的吸附更大。煤中水分的高低是决定煤堆温度上升的重要因素,煤中水分的蒸发潜热和煤的氧化热的平衡决定了煤堆温度升高;当温度升高到80~90℃时趋于平衡。外水高时,该平衡能维持较长时间;外水低时维持的时间很短,同时在风筒效应的作用下,20~30d就能自燃。

114硫化物煤中硫通常以2种形态存在:一是以有机物形态存在的有机硫;另一类是以无机物形态存在的无机硫。有的煤中存在单质元素硫。有机硫的组成极为复杂,有硫醇类等5类官能团;无机硫可分为硫化物硫和硫酸盐硫。硫化物中绝大多数是黄铁矿,但也有少量的白铁矿,成分都是FeS2,只是晶体结构不同;硫酸盐主要是CaSO4、FeSO4•2H2O。有机硫、硫铁矿硫和元素硫可在空气中燃烧,称为可燃硫;硫酸盐硫在空气中不能燃烧,称为不可燃硫(也称为固定硫)。神华煤硫含量低,但相对集中。神华煤中的硫化物起到了点燃和加速煤堆自燃的关键作用。常温常压下反应如下:2FeS2+7O2+2H2O=2H2SO4+2FeSO4+2186MJömol这一反应放出大量的热。通过计算可知,局部小单元含量达到2%的硫化铁硫可将局部煤的温度提高到260℃,接近神华煤的燃点。

115外因煤的堆高、粒度、杂物、外部温度、天气、通风情况、烟囱效应等都对神华煤的自燃有影响。

116自燃表示煤自燃趋势的特性是:高氧化特征速度、高脆性、存在粉碎的硫化铁、粒度特性、热平衡特性和着火点特性等。变质程度低,表面积大,内部丰富的小毛细管造成了神华煤的内水高;煤的水分高又使煤粉末粘满在大粒度的煤炭表面,形成一个个小单元。因为氧化发生在煤炭颗粒的表面。这种小单元非常容易吸附氧气发生氧化反应,又不利于水蒸气的蒸发和热量的散发,容易造成热量的骤集。神华煤中,硫多以硫铁矿结核和裂隙沉积的方式存在,硫分相对集中。当煤炭破碎时,硫铁矿多暴露在煤炭的表面,在水分作用下,这些表面又粘满了大量煤粉;煤粉吸附大量氧气,非常易于硫铁矿的氧化,放出大量的热,使周围温度升高。当温度达到着火点时,煤粉先开始自燃,同时,局部的气化和冷凝过程导致水蒸气通过煤堆运动。这种润湿作用使煤堆内部温度升高,自燃面积增大。

2神华煤的仓储管理

211要制定合理场存量了解了神华煤的自燃机理,就可采取有效对策防止自燃。神华煤到港后,现场接车人员要对其进行全面的质量检查,包括品种、粒度、煤温和杂物等,认真填写接车记录,及时与港口联系卸车、归垛,完成神华煤在港口仓储的第一阶段工作。(1)不同种的煤尽可能单堆单放。对场存煤实行分场、分仓、分垛位管理,建立港存煤情况台帐,煤炭入出库要及时上帐和消帐。(2)建立经济合理的场存数量。既要满足港口的装船需要,又要降低煤炭的存储费用。堆存量一般不超过堆存能力的115倍,堆存时间原则上不超过2个月。(3)以“先进先出法”办理出库。出库时要及时清仓、清底,不留垛底,运走一垛清一垛。

212仓储管理要科学(1)夏季时,采取小煤堆储存。地面储煤,把底部和四周封严,煤堆铺平、压实,以消除煤堆的风筒效应,防止自燃。(2)经常测量煤堆温度,发现高温及早处理。如有的点发生部分自燃,要尽快将自燃部分从煤堆中分离出来,并对自燃部分直接注水灭火,防止发生大面积着火。(3)神华煤中硫,多以硫铁矿结核和裂隙沉积形式存在,硫分相对集中。煤被破碎时,硫铁矿大多暴露在煤的表面。

这些表面在水分作用下又粘满了大量煤粉,煤粉吸附大量氧气,非常易于硫铁矿氧化,放出大量热,使周围温度升高。因此,对高温煤处理时,直接用水灭火会造成更大面积的自燃。(4)高温或着火煤要单独卸存,降温处理后方可按煤种归垛。煤温超过50℃时不得装船。

总之,了解神华煤的特性,采用科学有效的方法进行管理,是神华煤仓储管理的关键所在。

参考文献

1神华煤炭1中国标准出版社120031021

2E1J1霍夫曼1煤的转化1