小议基于灰色关联分析的供应商的择选与评判

时间:2022-03-30 11:34:00

导语:小议基于灰色关联分析的供应商的择选与评判一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

小议基于灰色关联分析的供应商的择选与评判

摘要:主要探讨供应链中供应商评价和选择问题,给出了一种基于灰色关联度方法,以实现对供应商的全面、客观和科学地评价与选择。最后通过算例分析,证明该方法是可行的。

关键词:灰色关联分析;供应商选择;评价指标

21世纪,企业面临的是一个复杂的竞争环境:市场竞争日益激烈,用户需求的不确定性和个性化增加,高新技术迅猛发展,产品寿命周期缩短和产品结构越来越复杂。在这种新的竞争环境中,企业要赢得竞争优势,提升自己在行业的位置,就需要引入供应链。而供应商作为供应链系统的重要环节,不仅是企业组织生产的先决条件,而且是降低成本,获取竞争优势的重要源泉。因此,找出一种合适的方法对供应商进行选择与评价就显得尤为重要。目前常用的供应商选择与评价方法主要有层次分析法[1]、TOPSIS[2]、线性权重法[3]、多目标数学规划法[4]、神经网络算法[5]等。

尽管上述方法在进行供应商选择与评价时各有特点,但是考虑到影响供应商选择与评价的因素较多,评价指标的统计数据往往非常有限,加上人为的因素,多数据波动较大,没有典型的分布规律,而且既有定性因素,又有定量因素,因素之间没有确定的数量关系,即部分信息已知,部分信息未知,是一种典型的灰色系统。在“贫信息”情况下,传统数学方法在客观、全面地分析此类问题时就显得无能为力。而具有所需原始数据少、原理简单、运算方便、易于挖掘数据规律等优点的灰色系统理论,尤其是灰色关联分析理论在处理此类问题时能[6]取得令人满意的结果。因此,本文尝试用灰色关联度分析法对供应商进行选择与评价。

一、供应商选择与评价指标体系的建立

1.供应商选择与评价指标体系所应遵循的原则。选择合适的供应商是一个多准则多目标化问题,需要从多个角度对供应商进行衡量对比,以科学、客观地反映供应商的情况,综合体现供应商的[7]潜在发展能力。总的来说,评选的标准应遵循以下四个原则:(1)完备性和简洁性原则。(2)客观性和可比性原则。(3)可重构性和可扩充性原则。(4)定量与定性相结合的原则。

2.供应商选择与评价的指标设定。供应链研究的权威机构PRTM在SCOR(SupplyChainOperationsReference)模型中提出了度量供应链绩效的11项指标,目前供应链委员会的170多个成员企业都在使用该评价指标。在具体的供应商评价指标筛选中,从使供应链绩效最大化的目标出发,按照指标的设计原则,本文拟选择易于度量、量化并且数据容易收集的其中七个指标来进行评价,它们是:产品质量、研发能力、生产能力、售后服务、财务状况、产品价格、准时交货率等。供应链在运行期绩效评价体系[8]包括三个方面:产品角度、组织角度和信息共享角度。其中产品质量、产品价格和准时交货率是从产品角度而言,售后服务、研发能力、生产能力和财务状况是从组织角度而言。

二、灰色关联度分析法

灰色关联分析(GreyRelationalAnalys,GRA)灰色理论的两大支柱之一。灰色关联分析法是分析系统中个因素关联程度的一种方法,或者说是对系统动态过程发展态势量化比较分析的方法。其基本思想是根据系统动态过程发展态势,即有关统计数,来判断其关联程度,据的几何关系及其相似程度,认为若干个比较数据所构成的曲线形状越接近,则变化态势越接近,关联度就越大。关联度系数的计算就是因素间关联程度大小的一种定量分析。这种分析方法对数据的要求并不是太高,数据多和数据少都可以进行分析。

三、灰色关联分析法选择与评价步骤

第一步:建立标准化决策矩阵D。设m个供应商作为备选方案,具有n个评价属性。用相应的xij表示第i个供应商的第j个属性值,构造决策矩阵D如下:

D=X11X12…X1nX21X22…X2n……Xm1Xm2…Xmn

由于选取的各数据量纲不尽相同,故需要对原始数据进行如下标准化处理,进而每个属性具有同样长度的向量:

bij=(1)

第二步:确定权重向量ω,通过德尔斐法,邀请专家打分给出。

第三步:建立加权标准化决策矩阵V:

V=ω1b11ω2b12…ωnb1nω1b21ω2b22…ωnb2n……ω1bm1ω2bm2…ωnbmn

第四步:确定参考指标序列。经过规范化处理之后,其对比的相对最优比较序。

p*=(p*1,p*2,…,p*n)

第五步:计算第i个方案与最优比较序列的灰色关联系度:

计算第i个方案与最优比较序列关于第j个指标的灰色关联系数:

r+ij=,ζ∈(0,1)(2)

其中:Δi(j)=|p*j-Vij|

m=Δi(j),M=Δi(j),ζ为分辨系数,一般取值0.5。

式中:ρ为分辨系数,0<ρ<1,根据不同背景要求取值,通常取ρ=0.5。

第i个方案与最优比较序列的灰色关联度为:

Ri=r+ij(1,2,…,m)(3)

第六步:排列偏好顺序,依据Ri值的降序,即从大到小对供应商进行排序选择最大的为最优。

四、实例分析

某一核心企业要从8个供应商中选择理想的供应商。它采用的评价指标包括:产品质量、研发能力、售后服务、财务状况、生产能力、产品价格和准时交货率。分别用a1,a2,a3,a4,a5,a6,a7表示,各评价值(见表1)。通过专家打分给出的权重系数为。

ω=(ω1,ω2,ω3,ω4,ω5,ω6,ω7)

=(0.3397,0.0660,0.0693,0.0245,0.1678,0.1678,0.1639)

加权标准化决策矩阵V为:

V=0.11550.02310.02620.00830.07200.05440.05700.10690.02340.02400.00920.04070.04420.06310.10470.02580.02380.00840.06260.07690.05150.10550.02470.02350.00940.04700.06900.05900.13540.02200.02540.00800.05320.04700.05420.12690.02340.02670.00820.07510.07530.06110.14000.02230.02290.00840.05950.05170.0549

确定参考指标序列:

p*=(0.1411,0.0258,0.0267,0.0094,0.0751,0.0442,0.0515)

由公式(2)和(3)得出各备选供应商的评价值与理想解的灰色关联度为:

Ri=(0.8070,0.7684,0.7510,0.8243,0.7748,0.8851,0.8217,

0.8725)

按上述灰色关联度的将次排序为:

R6>R8>R4>R7>R1>R5>R2>R3,供应商6为最佳供应商。

参考文献:

[1]林勇,马士华.供应链管理环境下供应商的综合评价选择研究[J].物流技术,2000,(5):30-32.

[2]王东,田冰,汤小龙.TOPSIS法选择物流供应链中的供应商[J].经济师,2007,(10):255-256.