电力电子器件热失效及管理研究
时间:2022-10-17 11:17:56
导语:电力电子器件热失效及管理研究一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
摘要:针对电力电子器件热管理始终难以解决的问题,需采用科学合理的管理方法改变热设计,以提升热设计的可靠性。具体地,分析电力电子器件热失效故障以及措施,详细探讨电力电子器件热失效的过程,重视设计评审的重要性,从而使电力电子器件中的热失效能够达到良好的防范效果。
关键词:电力电子器件;热管理;热失效
电子器件由于受到热应力积累效应、其他化学反应等影响易导致器件失效,其中造成电子器件失效的主要原因是温度过高。通过对电力电子器件的科学管理,在故障发生前管理防范对任务有影响的模式,从而有效提升电力电子器件的热可靠性能。
1电力电子器件热故障管理及措施
1.1热故障机理与现状。要科学合理得进行热故障管理,需要分析热功能原理,并在分析过程中找出产生热失效的原因和导致的严重后果。电力电子器件无论是静态休息还是动态运行中都存在能量损耗情况,导致该零件的热量与其他部位的芯片零件产生一定的温度差,从而使温度差转化成热量。这种热量通常以辐射或者传导的方式进行传递。因为许多热故障都是隐形故障,所以在失效调查时很难发现,产生此种现象的主要原因是间歇性失效。由于不能查找出具体原因,所以出现故障时不能及时进行维修,即便重新安装也会导致系统无法正常运转,从而可能引发一系列问题,并因找不出故障的具体原因而付出高昂的反复维修费用[1]。1.2热失效与温度的关系。运行过程中,器件温度过高与失效率呈指数形式不断增长,而这种增长形式只是一种较为相近的关系。除了器件高温之外,还有其他模式造成器件不能使用。许多热值失效对设置中的一些物理化学成分造成一系列结构变化,且这种变化由于温度的上升而不断加剧,使其在高温下失效。反言之,当器件温度同室内温度环境相似时,工作温度失效率也随之降低。这是因为器件在工作运转过程中与室内的温度产生加大的温度差时,会对化学变化速度减少不利影响,使其失效速度随之快速下降。因为器件材料不同,器件收缩程度不同,从而对器件的热度有所增加。同时,这会令器件中凝结的水发生腐蚀或者短路现象,所以在很低的温度下器件的失效率同样会增加。综合所述,工作环境是电力电子器件热管理的主要成因[2]。1.3热管理常用措施。在保持电力电子器件原始设计的同时,要预防器件发生任何故障,需要利用电子设备进行热设计管理。通过漏热热阻、传导电阻以及辐射散热等相关路径防止热致失效,提升器件的可靠性,降低经济损失。另外,设计过程中,应注意定型后改进热设计的成本要比事先热设计的成本高。为此,要想有效改进热设计,应该减少多个影响电力电子致热的因素。
2常见热失效模式管理
体内玷污、封装问题以及机械问题等,都是造成可控硅失效的主要原因。优化的失效管理模式,不但在生产过程中对参数和设计机理有着很好的预防效果,还会在器件失效的过程进行准确判断。通过观察热点发生情况,同分析器件的失效原因进行对比得出结论,从而为电力电子器件的热失效诊断提供良好的科学数据[3]。2.1电流上升过快造成失效。通电后,电流上升速度过快会使器件存在一定的危险,这种危险产生的热点多是由低阻值、电容放电、电路不良等诸多因素触发的。所以,出现烧坏点是经常发生的事情。依据观察可以发现,当前如果因触发相关因素产生任何不适,会出现如同针眼般细小的烧坏点。但是,出现高控制触发会把电力电子器件烧成弧形,甚至会把电力电子器件熔烧透。遇到这种问题时,技术人员应该根据具体情况选择合适的控制触发器。其中,中心触发控制极可以提升电流上升率。因为这种中心触发器可以增加环形面积。同中心触发器件相比,边缘触发器件需要根据硅片直径进行[4]。2.2过电压与瞬间过压造成失效。过电压能够对可控硅造成多种损坏,也就是说在电压失效时,通常是因为器件热点过热才会烧坏针眼大小的范围,当电力电子器件体内漏电过多时也会增大烧坏面积。这需要采用优良合理的科学设计,寻找合适的参数与电路与之相匹配,防止抑制系统出现问题。假如阳极与阴极之间的两端产生很陡的电压,那么在电容器会有电流经过。该电流与控制极电流的作用相似,这时电力电气器件不再受任何控制,很大程度上造成严重烧毁,所以需采用科学合理的对应措施,以抑制器件两端存在的电压。2.3热设计不合理造成失效。半导体使用过程中,不能超过半导体预设的温度定额。如果器件温度过高,会造成器件损坏。当半导体功率到达预定电压时,会造成漏电现象,使其电力电气器件发热,从而产生严重的漏电现象,增加器件的消耗令器件温度过高,长此以往造成电力电子器件损坏。在半导体接近设置温度时,技术人员必须确保电力电子器件产生的功率值小于等于功率消散数值。当电力电子器件大于功率消散值时,会出现热电击穿现象。这是因为漏电会产生一定的热度,为此当电力电子器件温度过高时,会令功率无法消散。为了有效防止产生过高的温度,技术人员要采用科学合理的应对方法,选择适合的参数值进行散热,使其拥有良好的散热渠道[5]。2.4模块浪涌电流冲击导致失效。在额定结温正常工作运行状态下,电力电子器件能够承受较大的浪涌电流冲击,且不会造成损坏。在浪涌电流出现时,结温值会在极短的时间内上升或超过设定的温度。电力电子器件的热值稳定,导致产生的热量不会轻易散去。当器件重复失效时,器件将无法在自身冷却后到达额定温度范围。如果浪涌电流超过预期数值,会造成没有散热的区域受到影响。
3电力电子器件热管理可靠性的设计评审
3.1设计评审提升电力电子器件热管理效率。技术人员要建立评审团队,且该评审团队中必须有电子系统设计师。此外,团队中还要有其他技术领域设计师加入,对供应商以及忠实顾客等设计的指标进行鼓励确认。在设计评审过程中,评审人员必须对其产品的使用、维修等诸多环节进行详细评估,并在评估时充分考虑产品的使用性能和安全因素,同时要考虑热承受最大值和变化率因素。另外,环境中气温变化、空气中携带的腐蚀性以及相对潮湿的环境,也需要在评审时考虑。3.2加大电力电子器件热管理的设计评审。硬件在接受环境试验时,只要超出预定的载荷数值就会导致失效。在全面分析可靠性能时,技术人员要准确掌握载荷出现的概率值。即便这种特殊极端的概率事件不现实,只要从失效记录中找取相关数值,依然能摸索出数据值。3.3电力电子器件热管理需要加强设计评审。设计评审过程中,技术设计师需要提供正式报告以及相关数据设计说明,并对该设计进行简短产品介绍,介绍完毕后对其质疑性问题进行详细解答。当设计评审通过团队的方式进行评审时,需要对评审结果进行研究讨论,才能确保设计评审时公开公平公正。另外,在正式评审前,技术人员要提前准备好热设计的详细资料,避免在设计评审过程中发生临时修改的事件,还要确保设计资料提供的是最新可靠数据值,尽量避免出现模棱两可的问题[6]。
4结论
以热失效的角度对电力电子器件中常见的热失效原因进行分析,在分析探索中寻找科学合理的解决方法。笔者认为,技术人员应从其设计质量以及诸多管理方面实施把控,从而有效解决热失效存在的问题。此外,要在数据实验中寻找热失效的最终核心依据,通过数据实验探究寻找,使其能够科学合理地优化电力电子器件中的热设计,从而使电力电子器件中的热失效能够达到良好的防范效果。
参考文献:
[1]刘卫明,刘梦恒.电力电子器件的热失效及其管理研究[J].电子技术,2018,47(12):30-33.
[2]詹娟娟.电力电子器件及其应用的现状和发展[J].电脑迷,2018,(11):278.
[3]邢烜玮.电力电子器件常用散热方式及实效[J].电子技术与软件工程,2018,(19):237.
[4]王兰心.微电子封装器件热失效分析与优化研究[J].电子制作,2018,(17):99-100,98.
[5]郭怀新,孔月婵,韩平,等.GaN功率器件芯片级热管理技术研究进展[J].固体电子学研究与进展,2018,38(5):316-323.
[6]徐图.微电子封装器件热失效分析与优化设计[D].南京:南京理工大学,2016.
作者:张宾 单位:安徽省蚌埠市蚌埠医学院第一附属医院设备科
- 上一篇:煤矿机电设备安装拆除工艺探讨
- 下一篇:电子信息技术在电力自动化系统的运用