工程问题数学教案

时间:2022-05-19 06:16:00

导语:工程问题数学教案一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

工程问题数学教案

教学目标

1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.

2.能正确熟练地解答这类应用题.

3.培养学生运用所学到知识解决生活中的实际问题.

教学重点

理解工程问题的数量关系和题目特点,掌握分析、解答方法.

教学难点

理解工程问题的数量关系.

教学过程

一、复习旧知.

(一)解答下面应用题

1.挖一条水渠100米,用5天挖完,平均每天挖多少米?

列式:100÷5=20(米)

2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?

列式:

教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?

学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.

3.挖一条水渠100米,平均每天挖20米,几天可以挖完?

列式:100÷20=5(天)

4.挖一条水渠,每天挖全长的,几天可以挖完?

列式:(天)

师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.

二、探索新知.

(一)教学例9.

例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

1.教师提问:

(1)用我们学过的方法怎样分析?怎样解答?

30÷(30÷10+30÷15)=6(天)

(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?

60÷(60÷10+60÷15)=6(天)

90÷(90÷10+90÷15)=6(天)

24÷(24÷10+24÷15)=6(天)

(3)通过计算,你发现了什么?(结果都相同)

(4)为什么结果都相同呢?

工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)

(5)去掉具体的数量,你还能解答吗?

把这段公路的长看作单位“1”,甲队每天修这段公路的,乙队每天修这段公路的.两队合修,每天可以修这段公路的()

列式:

2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)

3.归纳总结.

4.小组讨论:工程问题有什么特点?

工作总量用单位“1”表示,工作效率用来表示数量关系:工作总量÷工作效率(和)=工作时间

5.练习.

(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?

(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?

三、巩固练习.

(一)选择正确的算式.

一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的,需要多少小时?正确列式是().

1.

2.

3.

四、归纳总结.

今天我们这节课学习了新的分数应用题—工程应用题.其解答特点是什么?(工作总量÷工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位“1”,工作效率用“”表示.)工程应用题还有很多变化,以后我们继续学习.

五、板书设计

工程问题

例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

30÷(30÷10+30÷15)=6(天)

一段公路,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?

(天)

特点:工作总量:“1”

工作效率:

工作总量÷工作效率=工作时间

工作总量÷工作效率和=合作时间

教案点评:

该教学设计的特点是新旧知识联系紧密,重点突出。复习中,通过应用题条件的变化,准确的抓住新知识的生长点。新课中,通过新旧知识的对比,突出了工程问题独特的分析思路和解题方法。