正切和余切数学教案

时间:2022-05-13 11:43:00

导语:正切和余切数学教案一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

正切和余切数学教案

、教学目标:

1、理解锐角的正切余切概念,能正确使用锐角的正切、余切的符号语言。

2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

二、教学设计的指导思想:

贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

三、重、难点及教学策略:

重点:锐角的正切、余切概念,探究能力的培养

难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

策略:突出重点、突破难点。

四、教学准备:

U盘,电脑,一副三角板,一块三角形模型,网格纸

五、教学环节的流程简图:

创设问题情境——→问题的研究——→讲授新课——→归纳小结及布置作业

六、教学过程:

一)创设问题情境:

1、引领练习:

①在Rt△ABC中,∠C=90°,当∠A=45°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

②在Rt△ABC中,∠C=90°,当∠A=30°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

2、提出问题:

在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

二)问题的研究:

1、几何画板动画演示:

2、运用定理证明:

得出结论:在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

三)讲授新课:

课题:29.1正切和余切

1、基本概念:

①在Rt△ABC中,∠C=90°,

正切:tgA==

(tangent)(tanA)

(tg∠BAC)

余切:ctgA==

(cotA)

②tgA=

③若∠A+∠B=90°,则tgA=ctgB,ctgA=tgB

2、例题讲解:

例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,

①求tgA的值.

②求tgB的值.

③过C点作CD⊥AB于D,求tg∠DCA的值.

3、巩固练习:

①选择题:

1.在Rt△ABC中,∠C=90°,若各边的长都扩大3倍,则∠B的正切值()

A.扩大3倍B.缩小为原来的C.没有变化D.扩大9倍

2.在Rt△ABC中,∠C=90°,∠A和∠B的对边是a,b,则与的值相等的是()

A.tgAB.tgBC.ctgAD.ctgB

②解答题:

如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,

BD=5,DE=2,EC=3,∠ABC=α,

∠ADC=β,∠AEC=γ,

求:①tgα。

②ctgβ。

③tgγ。

4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为。

四)小结:(略)

五)思考题:已知:在Rt△ABC中,∠C=90°,tgA、tgB是方程的两根,求m.。

六)布置作业:

七、板书设计:(略)

八、教学随笔:(略)

锐角的三角比

------正切和余切

初三数学组徐榕

一、教学目标:

1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。

2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

二、教学设计的指导思想:

贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

三、重、难点及教学策略:

重点:锐角的正切、余切概念,探究能力的培养

难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

策略:突出重点、突破难点。

四、教学准备:

U盘,电脑,一副三角板,一块三角形模型,网格纸

五、教学环节的流程简图:

创设问题情境——→问题的研究——→讲授新课——→归纳小结及布置作业

六、教学过程:

一)创设问题情境:

1、引领练习:

①在Rt△ABC中,∠C=90°,当∠A=45°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

②在Rt△ABC中,∠C=90°,当∠A=30°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

2、提出问题:

在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

二)问题的研究:

1、几何画板动画演示:

2、运用定理证明:

得出结论:在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

三)讲授新课:

课题:29.1正切和余切

1、基本概念:

①在Rt△ABC中,∠C=90°,

正切:tgA==

(tangent)(tanA)

(tg∠BAC)

余切:ctgA==

(cotA)

②tgA=

③若∠A+∠B=90°,则tgA=ctgB,ctgA=tgB

2、例题讲解:

例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,

①求tgA的值.

②求tgB的值.

③过C点作CD⊥AB于D,求tg∠DCA的值.

3、巩固练习:

①选择题:

1.在Rt△ABC中,∠C=90°,若各边的长都扩大3倍,则∠B的正切值()

A.扩大3倍B.缩小为原来的C.没有变化D.扩大9倍

2.在Rt△ABC中,∠C=90°,∠A和∠B的对边是a,b,则与的值相等的是()

A.tgAB.tgBC.ctgAD.ctgB

②解答题:

如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,

BD=5,DE=2,EC=3,∠ABC=α,

∠ADC=β,∠AEC=γ,

求:①tgα。

②ctgβ。

③tgγ。

4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为。

四)小结:(略)

五)思考题:已知:在Rt△ABC中,∠C=90°,tgA、tgB是方程的两根,求m.。

六)布置作业:

七、板书设计:(略)

八、教学随笔:(略)