勾股定理数学教案
时间:2022-05-01 10:18:00
导语:勾股定理数学教案一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来.
勾股定理:直角三角形两直角边的平方和等于斜边的平方
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形.
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明
4、定理与逆定理的应用
例1已知:如图,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴∠2=∠C
又
∴
∴CD的长是2.4cm
例2如图,△ABC中,AB=AC,∠BAC=,D是BC上任一点,
求证:
证法一:过点A作AE⊥BC于E
则在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
证法二:过点D作DE⊥AB于E,DF⊥AC于F
则DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3设
求证:
证明:构造一个边长的矩形ABCD,如图
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3
图3中,在Rt△DGF中
同理
∴图3中的路线长为
图4中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH=及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
∵3>2.828>2.732
∴图4的连接线路最短,即图4的架设方案最省电线.
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业:
a、书面作业P130#1、2、3
b、上交作业P132#1、3
板书设计:
探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
解:(1)由点A作AD⊥BC于D,
则AD就为城市A距台风中心的最短距离
在Rt△ABD中,∠B=,AB=220
∴
由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.
故该城市会受到这次台风的影响.
(2)由题意知,当A点距台风中心不超过60千米时,
将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,
该城市都会受到这次台风的影响
由勾股定理得
∴EF=2DE=
因为这次台风中心以15千米/时的速度移动
所以这次台风影响该城市的持续时间为小时
(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为级.