长方体和正方体数学教案
时间:2022-04-07 09:58:00
导语:长方体和正方体数学教案一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
(一)单元教学目标
1.通过观察和操作,认识长方体和正方体的特征以及它们的展开图。
2.通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1m3、1dm3、1cm3以及1L、1ml的实际意义。
3.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。
4.探索某些实物体积的测量方法。
(二)单元教学重难点
1.重点:
(1)掌握长方体和正方体的特征。
(2)掌握长方体和正方体的体积和表面积的计算方法。
(3)能运用所学知识解决一些简单的实际问题。
2.难点:
(1)表面积概念的建立,以及会根据信息求表面积。
(2)体积概念的建立,以及会根据信息求体积,会进行单位间的换算及改写。
(3)体积和容积的区别。
1.
长方体和正方体
第一课时
长方体的认识
教学内容:教科书第27~29页。
教学目标:
1.通过观察实物和动手操作等教学活动,掌握长方体的特征,形成长方体的概念。
2.理解长方体各面的长和宽与长方体的长、宽、高之间的关系。
3.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
4.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点:掌握长方体的特征,形成长方体的概念。
教学难点:建立长正方体的空间观念。
教学准备:师:长方体模型及框架,生:长方体物体
教学过程:
一、复习准备:
(展示教科书第27页的主题图)长城上的砖、高楼、冰箱、衣柜、电视机包装箱都是什么形状的?
像长城上的砖、高楼、衣柜、冰箱这些物体的形状都是长方体的,像电视机包装箱这种物体的形状是正方体。生活中还有哪些物体的形状是长方体的?哪些物体的形状是正方体的?
师:这些物体,它们的大小、高矮都不一样,为什么都是长方体?长方体究竟有什么特征?今天这节课我们就来进一步认识长方体的特征。(教师板书:长方体的认识)
二、学习新课:
(一)认识长方体立体图
观察长方体,一次最多能看到几个面?
如果我们从右前方观察,所看到的这个长方体画出来就是这样。(出示立体图)
看不到的面我们用虚线表示。(补充虚线)
(二)探究长方体的特征。
1、请同学取出自己准备的长方体。
教师提问:请用手摸一摸长方体是由什么围成的?
师:长方体上这种平平的面,我们把它叫做长方体的面。
请用手摸一摸两个面相交处有什么?
师:两个面相交的这条线,我们叫它叫做棱。
请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
1、
参考讨论提纲来研究长方体的特征。
活动一:现在我们已经知道了长方体各部分的名称,那么咱们就从这三个方面入手,通过看一看、数一数、量一量、想一想等方法探讨一下长方体的特征。请同学们拿出课前准备的长方体物品来观察,你能发现什么?将小组同学的发现填在下面的表格中。
请学生汇报时在数面、棱和顶点个数时,要求他们说出数的方法,注意提醒学生用一只拿住长方体不动,按照一定的顺序数,避免重复和遗漏,培养有顺序地观察。在相对面的大小及相对棱的长短研究中,要注意了解学生的研究方法及策略。
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶点:8个。
师:请完整地说一说长方体的特征。
活动二:
用学具盒中的塑料小棒和连接器做一个长方体的框架。说一说在制作过程中你有什么发现?
你能回答下面的问题吗?
(1)长方体的12条棱可以分成几组?
(2)相交于同一顶点的三条棱长度相等吗?
我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定后,把左右方向的棱叫做长,把前后方向的棱叫做宽,和底面垂直的棱叫高.
(3)把长方体横入、竖放、侧放,根据长方体摆放的不同情况,让学生说出它的长、度和高。
指出下面长方体的长、宽、高各是多少厘米?
(4)(出示一个长方体框架)如果已知一个长方体长10厘米,宽6厘米,高5厘米,求做这个长方体框架需要多长的铁丝,应该怎样算?方法一:将每一条棱长相加;
方法二:将长、宽、高分别乘4,然后将所得的积相加;
方法三:将长、宽、高的和乘4。
问:哪种方法更简便?
三、巩固练习
1、P31第1、3、4题
2、P32第7、6题
板书设计:
长方体的特征
面:长方体有6个面,每个面都是长方形(特殊情况下相对的两个面是正方形),相对的面完全相同。
棱:有12条棱,相对的棱的长度相等。
顶点:有8个顶点。
相交于一个顶点的三条棱长度分别叫做长方体的长、宽、高。
教学反思:
1、对于长方体长和宽如何确定
长方体的长和宽到底如何确定?是以底面长方形的长边为长,短边为宽,还是以长方体水平放置后左右方向的棱为长,前后方向的棱为宽?这一问题在我校数学组内产生了争议。其实,如何确定长方体的长、宽、高可能只是人们的一种约定俗成。无论如何确定,它的表面积和体积的大小都不会因此发生改变。但如果按左右方向为长、前后方向为宽,垂直方向为高,那么在教学长方体的表面积时就可以帮助学生总结出如下规律:
长方体的前、后面=长*高*2
长方体的左、右面=宽*高*2
长方体的上、下面|=长*宽*2
如果按底面长方形的长边为长、短边为宽,则在长方体的表面积计算推导过程中就必须根据物体的摆放来灵活确定每个面的面积如何列式了。这一问题如何处理,将关系到后继长方体表面积的教学设计。
在无法定夺的情况下,请教了教研员。结论如下:如果长方体是水平放置,人们习惯于将左右方向的棱称为长,前后方向的棱称为宽。如果长方体非水平方向放置,人们则一般以底面较长的边为长,较短的边为宽。
2、纸上得来终觉浅,绝知此事必躬行。
有人说“我听了,就忘了;我看了,记住了;我做了,才理解了。”听、看、做代表着三个不同层次,在大脑皮层留下的痕迹也有深有浅。今天的课堂教学很好地印证了上面这段话,也使我深切地感受到课堂应该成为所有学生探究的舞台,而非老师或个别学生展示的舞台。
以往开学,每位学生都会有数学学具盒供教学操作时使用。其中本册学具盒中就有可拼成长方体、正方体框架的不同颜色、长短的小棒。可这学期由于某些原因学具盒暂时还未发到学生手中。这节课,我又只要学生准备了长方体盒子,而没要求他们带不同长短的小棒及橡皮泥。所以例2,今天只能以个别学生上台用教具操作演示,其他学生当“观众”的方式进行教学。这种学习方式,虽然学生通过观察框架也能得出长方体12条棱可以分三组,每组互相平等的4条棱长度相等的结论,但到后面巩固练习中要求棱长和时就又迷糊了。有的学生必须看实物或框架图才能正确列出算式,还有的学生不知道是将长、宽、高乘3还是乘4……
实践证明:教师的演示或部分学生的操作不能代替大家的自主探究,只有亲身参与,才能更好地将书本知识内化为个体储备,进而运用到解决生活中的实际问题。因此在今后教学中,要注意拓展探究的时间和空间,让课堂成为学生探究的舞台。
3、对棱长和的教学思考
在教学完长、宽、高的认识后,我顺势补充了长方体棱长和的相关内容。原因有二:一是通过拼摆长方体框架,能够帮助学生顺利推导出棱长和的计算公式;二是教材练习中对这部分有所涉及,必须在课堂教学中有所渗透。
作业中相应习题建议调换一下顺序,先教学第7题,再讲第6题。因为第7题是要求长方体12条棱长之和,而第6题则需要根据实际灵活处理,只求出其中8条棱长之和即可(少了两条长和两条宽)。
4、知识点较多,时间分配上有些力不从心
本课我既想让学生通过充分探究发现长方体的特征,又想培养他们的空间观念,能仅凭立体图就正确回答出长方体各个面的面积该如何列式,还想让他们掌握棱长和的简便求法。
我将长方体的特征定为本课教学重点,因此在探究上给予学生充分的时间,并在方法与策略上注意引导,学生学得较扎实。但到后面两部分时,明显觉得教学时间不够,只能囫囵吞枣。总之,感觉一节课40分钟难以扎实完成教学任务。
如果时常无法在预订时间内完成教学任务,而需要再花课外时间来补充,是否说明这样的教学设计很失败?你们认为上述三个知识点是否应该在一节课内完成?如果是,又该如何分配时间较为合理呢?