椭圆圆锥曲线教案
时间:2022-03-02 10:29:00
导语:椭圆圆锥曲线教案一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。
教学目标:
1、椭圆是圆锥曲线的一种,是高中数学教学中的重点和难点,所以这部分内容中的知识点学生必须达到理解、应用的水平;
2、利用投影、计算机模拟动点的运动,增强直观性,激励学生的学习动机,培养学生的数学想象和抽象思维能力。
教学重点:对椭圆定义的理解,其中a>c容易出错。
教学难点:方程的推导过程。
教学过程:
(1)复习
提问:动点轨迹的一般求法?
(通过回忆性质的提问,明示这节课所要学的内容与原来所学知识之间的内在联系。并为后面椭圆的标准方程的推导作好准备。)(2)引入
举例:椭圆是常见的图形,如:汽车油罐的横截面,立体几何中圆的直观图,天体中,行星绕太阳运行的轨道等等;
计算机:动态演示行星运行的轨道。
(进一步使学生明确学习椭圆的重要性和必要性,借计算机形成生动的直观,使学生印象加深,以便更好地掌握椭圆的形状。)
(3)教学实施
投影:椭圆的定义:
平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(一般用2c表示)
常数一般用2表示。(讲解定义时要注意条件:)
计算机:动态模拟动点轨迹的形成过程。
提问:如何求轨迹的方程?
(引导学生推导椭圆的标准方程)
板书:椭圆的标准方程的推导过程。(略)
(推导中注意:1)结合已画出的图形建立坐标系,容易为学生所接受;2)在推导过程中,要抓住“怎样消去方程中的根式”这一关键问题,演算虽较繁,也能迎刃而解;3)其中焦点为F1(,0)、F2(c,0),;4)如果焦点在轴上,焦点为F1(0,)、F2(0,c),只要将方程中,互换就可得到它的方程)
投影:椭圆的标准方程:
()
()
投影:例1平面内两个定点的距离是8,写出到这两个定点的距离的和是10的点的轨迹方程
(由椭圆的定义可知:所求轨迹为椭圆;则只要求出、、即可)
形成性练习:课本P74:2,3
(4)小结本节课学习了椭圆的定义及标准方程,应注意以下几点:
①椭圆的定义中,②椭圆的标准方程中,焦点的位置看,的分母大小来确定
③、、的几何意义
(5)作业
P80:2,4(1)(3)
- 上一篇:不等式证明教案
- 下一篇:数列数列的通项公式教案