组齿轮箱范文10篇
时间:2024-04-21 15:58:23
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇组齿轮箱范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
风力发电机组齿轮箱研究论文
第一节概述
风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。
由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件,等等。对冬夏温差巨大的地区,要配置合适的加热和冷却装置。还要设置监控点,对运转和润滑状态进行遥控。
不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。在风电界水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动最为常见。
如前所述,风力发电受自然条件的影响,一些特殊气象状况的出现,皆可能导致风电机组发生故障,而狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上,大量的实践证明,这个环节常常是机组中的齿轮箱。因此,加强对齿轮箱的研究,重视对其进行维护保养的工作显得尤为重要。第二节设计要求设计必须保证在满足可靠性和预期寿命的前提下,使结构简化并且重量最轻。通常应采用CAD优化设计,排定最佳传动方案,选用合理的设计参数,选择稳定可靠的构件和具有良好力学特性以及在环境极端温差下仍然保持稳定的材料,等等。
一、设计载荷
风力发电机组齿轮箱研究论文
第一节概述
风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。
由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件,等等。对冬夏温差巨大的地区,要配置合适的加热和冷却装置。还要设置监控点,对运转和润滑状态进行遥控。
不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。在风电界水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动最为常见。
如前所述,风力发电受自然条件的影响,一些特殊气象状况的出现,皆可能导致风电机组发生故障,而狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上,大量的实践证明,这个环节常常是机组中的齿轮箱。因此,加强对齿轮箱的研究,重视对其进行维护保养的工作显得尤为重要。第二节设计要求设计必须保证在满足可靠性和预期寿命的前提下,使结构简化并且重量最轻。通常应采用CAD优化设计,排定最佳传动方案,选用合理的设计参数,选择稳定可靠的构件和具有良好力学特性以及在环境极端温差下仍然保持稳定的材料,等等。
一、设计载荷
风力发电的技术经济探索
本文作者:胡明旭王维华工作单位:哈电集团现代制造服务产业有限责任公司
1风电设备型式的演化
齿轮箱存在的主要问题是噪声、磨损、功率损耗、维修、油污等,特别是在高达百米的高塔上作业,频繁地进行维修、更换部件,使厂家不堪承受,目前尚无保证其寿命的成熟技术。然而,为了达到更高的速比,使用多级齿轮箱更适宜。单级齿轮箱的速比选为6,齿轮箱功率损耗与速度成比例,三级齿轮箱损耗功率是额定功率的3%,单级是额定功率的1.5%。从1991年开始,推出无齿轮箱发电机系统,即所谓的直驱式发电机,主要是为了避免齿轮箱故障和减少维护量。为了和电网联接,这种风电设备还需要一个全功率电力电子变流器。然而配套的低转速、高转矩发电机和全功率变流器是相当贵的,因此,那时大多数采用直驱式直流或交流电励磁的发电机,后来推出永磁钢励磁,从而消除了励磁损耗。为了增加功率和降低转速,直驱式发电机变得越来越大和更加昂贵,为此提出了采用一个单级齿轮箱(速比为6或者更高)的装置,这一系统虽然仍有带齿轮箱、直驱式系统昂贵的发电机及全功率变流器等缺点,但与直驱式系统相比,它可以使发电机成本降低,效率提高。这个系统发电机的转矩仍然相当高,转速相当低,拥有一个大的直径和气隙,就有大的励磁电流和高的损耗。然而,变流器的额定容量可以降到30%,从成本和效率方面占有优势。这种单级齿轮箱的使用,使得整机外形尺寸显著缩小。
2风轮机特性
2.1功率P=(1/2)QCr2v3(1)式中:P为功率,MW;Q为空气密度,kg/m3;r为转轮半径,m;v为风速,m/s;C为功率系数,即空气动力效率,%;d为叶尖速比,叶尖周速/风速;a为桨叶节距角。2.2主要参数以P=3MW,额定转速为15r/min,额定风速v=12m/s,平均风速 v=7m/s,转轮直径为90m,最优叶尖速比8,最大空气动力效率(转轮)为48%,空气密度Q=1.225kg/m3为例进行结构布置方案对比。
3结构布置方案对比
齿轮箱生产工艺论文
1、风力发电齿轮箱功能以及技术现状
1.1齿轮箱的功能
常规的普通发电机组都需要达到一定的转速才能试运转发电,但是风力发电机的转速由于风力原因显然不高,所以风力发电机的风轮轴需要经过增速箱增速才能达到发电机的转速要求,而齿轮箱就是传递风轮动力并且使转速明显提升的关键设备。风轮的转速越低,齿轮箱的增速比要求也就越高,相应的复杂性、造价都会有很大的提升。所以齿轮箱是希望风轮的转速越高越好的。但是现在国际上风力发电的基本趋势是风轮为三叶片,而且叶越来越长,风轮的半径越来越大,这就要求了齿轮箱的技术越来越复杂与精密。
1.2齿轮箱技术现状
我国的风力发电机组的相关技术是从国外引进并发展的,但是从国外引进的相关技术中并没有风力发电齿轮箱的相关制造技术,所以我国的风力发电齿轮箱制造技术没有实际的技术借鉴,全靠研究人员按照电机组的技术规范自行研究和制造,所以齿轮箱制造技术不算很高。另一个尴尬的现实是,我国对风力发电的技术研究起步很晚,国内缺少对于风力发电技术特别精通的相关专业人才,相关的教育基础也比较低,种种原因都限制了我国的风力发电齿轮箱制造技术的快速发展。现在的齿轮箱产品离满足市场需求还有很长的路要走。
2、齿轮箱生产工艺
动力头结构设计论文2篇
第一篇
1动力头设计
1.1技术参数
TR180旋挖钻机动力头采用力士乐液压马达,液压马达输出的转矩和转速通过减速机减速增扭后传递到齿轮箱,齿轮箱内的减速齿轮进行二次减速,输出的大扭矩和低转速驱动钻杆和钻头回转,并提供钻孔所需的加压力、提升力实现钻孔作业。
1.2外形结构
TR180旋挖钻机动力头主要由齿轮箱传动系统、滑动支架总成和缓冲装置组成。
桥式叶轮给料机故障分析及处理方法
摘要:桥式叶轮给料机常常用于发电厂给煤,我单位两台桥式叶轮给料机主要用于石灰石的输送,它是一种沿石灰石卸料坑道纵向轴道行走或停在一处将石灰石均匀连续地拨到输送皮带上的设备,由于受物料粒度和环境因素的影响,故障比较频繁,针对一直以来出现的故障,我们制定了一系列解决方案,并予以实施,本文主要就如何处理此设备常见故障,阐述个人的一些观点和做法。
关键词:桥式叶轮给料机;常见故障;分析;处理
1常见的故障及原因分析
(1)叶轮给料装置主要部件伞齿轮箱特别容易损坏:原伞齿轮箱立轴上端轴承为水平方向安装,无储油装置,运转时,润滑油、脂容易下落,造成轴承缺油损坏;且仅有密封环一道密封装置,而立轴上端盖是直接接触物料,物料和粉尘常由密封盖环经上端轴承进入齿轮箱内,引起上端轴承缺油和油品污染而导致伞齿轮箱损坏;另外横轴两只原使用轴承的型号为32220圆锥滚子轴承,运转时产生的轴向力较大,且两只轴承分布的间距较短,仅为190mm,导致联轴器至横轴前端轴承间距为588mm;由于以上结构,横轴轴承极易损坏,轴向力过大极易挤坏端盖,横轴也常因扭力过大而变形、弯曲,从而导致伞齿轮箱损坏。(2)动力电源易断相、缺相:设备原有供电方式是滑触线,其动力电源及控制电源均是利用集电器从滑触线上取得,由于滑触线裸露,地坑潮湿且粉尘较大,加上行车轨道不平、弯曲等因素,导致集电器触头与滑触线接触不良,而且集电器容易脱落,经常造成给料机动力电源缺相、断相;另外,由于操作柜安装在给料机机架上,受现场潮湿环境和粉尘的影响,电气元件容易积灰、失效,均会导致电机或控制线路烧坏。(3)电机易坏,且调速和保护不可靠:原设备使用的滑差电机是由交流三相异步电动机、无滑环滑差离合器和测速发电机组成,测速发电机与滑差离合器输出轴共轴。同样由于卸料地坑工作环境差,粉尘较大,加之滑差电机外密封不好,粉尘直接进入滑差离合器内,经常造成轴承和滑差部分卡死甚至损坏;而且,滑差电动机离合器的励磁电源,是采用可控硅整流电源供电,使之实现宽幅无级调速,也因为粉尘较大,粉尘从接线盒进入测速发电机,造成测速反馈电路的反馈信号失真,从而直接影响了升、降速的准确性和可靠性,极易造成叶轮部分在因物料粒度大,遇到较大阻力时,无法及时对机械部分和电气部分形成保护跳停,而造成传动减速机或伞齿轮箱等损坏。
2整改方案及措施
(1)由于叶轮传动部分伞齿轮箱设计上存在诸多缺点,因而我们着重针对以上故障原因制定解决方案,主要包括以下三个方面:①为解决立轴端盖防灰密封不好以及上端轴承润滑不好而导致立轴轴承损坏等问题,我们对伞齿轮箱图纸做了较大修改,要求制造厂家按修改后的图纸技术要求重新制作伞齿轮箱。首先,对立轴上端轴承下部加装储油盘,防止润滑脂在立轴转动时掉落而引起轴承缺油,储油盘立边上端同壳体上盖保持约3mm间隙,确保不摩擦壳体,壳体轴承外圈位置对应加工两孔,攻丝并安装注油嘴,分别用于润滑脂的添加和多余润滑脂的排出,使轴承得到有效润滑,不因缺油而损坏轴承;其次,将迷宫密封端盖的沟槽加深,较大物料颗粒进入,另外在端盖迷宫槽的内侧再安装两道骨架油封,防止细小粉尘由迷宫密封端盖经立轴上端轴承进入箱体,污染润滑油品而引起齿轮箱损坏。②同样,为解决横轴因轴承型号使用不当,且轴承分布尺寸不对,导致横轴联轴器端因扭力过大而弯曲等故障,在保持伞齿轮箱体高度、壳体直径不变的情况下,将伞齿轮箱壳体横轴安装轴承位置加长,使横轴轴承间距由原来190mm增加到283mm,并且将原有两只32220圆锥滚子轴承改为23220调心滚子轴承,另外在靠联轴器端加装一只32220圆锥滚子轴承,以增大横轴的抗负荷能力和降低大、小伞齿轮啮合运转时对端盖产生的轴向力,防止轴承及端盖损坏;由于横轴轴承端位置加大,从而使联轴器到横轴前端轴承间距由580mm相应减少到415mm,达到有效防止横轴因不能承受足够扭力而变形的目的。③横轴端盖的密封装置也改用上述立轴端盖同样的密封方式,防止粉尘进入横轴轴承箱体内。(2)为提高供电和电气控制可靠性,将动力供电电路改为随行电缆供电,采取将动力电缆和视频监控线缆固定在导轨上滑行的12只小滑车上,随着叶轮给料机滑行,动力电源由地面操作室内变频控制柜直接送到电机;原控制系统改为变频控制并移至地面操作室,变频控制柜和操作柜由现场改为远程,通过增设视频监控系统在地面操作室内操作台对现场给料机运行实现远程监控和操作,从根本上消除了因集电器与滑触线接触不良、地坑潮湿、粉尘大以及集电器脱落带来的电源缺相、断相和控制柜电气元件失效等原因而造成的电机烧坏事故。(3)由于滑差电机在运行中存在启动电流大、不能长时间低速运转、滑差离合器和测速发电机部分易坏,影响调速及对机械部件保护的可靠性等缺点,而且滑差电机结构复杂、体积大,维修起来比较困难,因而改用调速范围广、运行比较稳定、维修操作方便的YVF2系列变频调速电机替代滑差调速电机。通过变频调速控制,降低电机启动和运行电流,有效保护伞齿轮箱、减速机等传动机械和电机,达到节能、降耗、提高设备稳定性的目的。目前我们使用的变频控制柜为广州宝米勒电气有限公司生产的MC200G系列,设定保护电流比正常取料运行时最大电流高10-15A。
齿轮箱减速比自动调节系统分析
摘要:本文简要介绍了船用齿轮箱减速比自动调节系统的设计思想,由此提出了船桨应用机制,继而探索了减速比控制系统的设计方案:主控制器、液压动力装置、其他问题调节等,以此提升自动调节系统的减速比控制能力,提升船用齿轮箱的应用性能。
关键词:齿轮箱;柴油机;自动调节系统
船只整体具有能量运作的平衡性,船舶主控系统,在油料燃烧状态下,将会产生扭矩,在传动装置、螺旋桨共同作用下,将扭矩转化为推力,借助推力消除船体自身形成阻力,以此提升船舶运行速度。在船舶航行期间,船只、船桨之间存在相互作用,如若工况发生浮动,将会难以维持系统原有平衡性,由此造成其它方面的工况变化。
1船用齿轮箱减速比自动调节系统设计简述
1.1传动装置设计准确性需求
柴油机在实际运行期间,含有特定的工况运行范围。在标准工况情况下,柴油机运行效率较高,同时产生的耗油问题较低,由此能够最大化彰显柴油机功率运行价值。同理,螺旋桨含有运行的最佳工况,在此条件下,能够高效完成能量转换。由此发现:螺旋桨与柴油机两者在运行期间,如若能够形成最佳组合状态,能够提升燃料使用的最大化价值,为船舶经济获取带来更多可能性。螺旋桨、柴油机的协作运行,作为航运部门较为关心的话题。螺旋桨设计期间,应完成主机信号选择与设计,保障传动装置的设计准确性。
水轮发电机组技术经济论文
1机型基本参数对比分析
小龙水电站最大水头6.31m,额定水头5.0m,最小水头3.0m,根据运行水头适合的机型有竖井贯流式和灯泡贯流式,但是,竖井贯流机组与灯泡贯流机组各具有其特点。小龙水电站工程在初步设计中推荐采用灯泡贯流式机组。但在施工设计阶段,遇到了诸多困收稿日期:2015-03-16难,比如:水轮发电机组采购时,由于机组运行水头超低、转速低、发电机尺寸大、生产周期长、制造难度大、交货时间不能满足电站的施工工期要求,同时大件运输也较困难等。于是对竖井贯流式和灯泡贯流式两种机型主要性能参数进行比较。由表1参数可知,在超低水头、相同同出力条件下,灯泡贯流式转轮直径比竖井贯流式大0.3m,转速低15%,水轮机重量多12%,水轮机流道尺寸也略大。水轮机最大起吊重量多12%,厂房起吊高度增加5%。而竖井贯流式发电机增加了一套变速系统,但发电机的重量仅是灯泡机的1/4,故机组重量轻。对发电机而言,若选用灯泡贯流式机型,按照水轮机参数,发电机转速为65.22r/min,转子磁极数为92个。根据电磁计算,发电机定子需选择450槽,发电机结构尺寸相对而言较大,其经济性指标明显下降,随之带来的是运输难度增大,发电机无法整体运输,灯泡头、锥体、定子机座等部件均需分瓣才能完成。同时,定子还需要在工地完成叠片、下线等工作,转子要采用叠片磁轭结构,也需在工地现场进行组装。从表中可以看出竖井贯流式机型,通过增设一个增速齿轮箱将发电机转速提高到750r/min,发电机结构尺寸大为减小,定子槽数减为了108槽,转子磁极数仅为8个,发电机可实现在制造厂总装配后整体运至工地。显然,给制造和运输都带来极大的方便。
2机型安装调试、周期的对比分析
由于灯泡贯流式机组结构紧凑,故安装工作要在狭小的空间里进行。而总体上这种机型,特别是对于尺寸较大的机组,其大部件刚性又相对较弱,这样,要满足机组重要部位设计精度的需要,其安装难度、调整工作量大、工作周期长是显而易见。但对竖井贯流式发电机组而言,情况则完全不一样,竖井贯流机组的发电机部分可在制造厂内进行总装,并在完成转动部件的静、动平衡试验后,如齿轮箱一样,整体运至工地可直接吊入竖井内就位后安装。另外,直锥尾水管的里衬在第一阶段安装,并作为后续工程的基准和支持面,导水机构在安装场预组装,待厂房土建工作结束后整体吊装就位,接着是安装主轴、转子、增速器和发电机,仔细地对中调直,使其在一条直线上,这样可大大减小安装场地,缩短安装周期。
3机型维护检修的对比分析
一般竖井外形除了迎水面做成圆弧形外,沿水面均为平面。灯泡贯流式机组发电机部分的维护工作较少,但维护操作则较为困难,发电机大修时流道需要进行排水,所需维修所需的时间较多。竖井贯流式机组发电机部分的维修操作则较为方便,不需要对流道部分实行排水。当然,增加了一个齿轮箱的维护,增速器一般指齿轮传动,需要我们对齿轮箱的选择给予足够重视,选用可靠的、高质量的产品,就完全可以将齿轮箱的故障率和机组总体噪音降到很低程度。由此看来,竖井机组也可以提高设备的运行可靠性和安全性,减少维护工作和费用。
风电场运营管理论文
随着我国社会经济的快速发展,社会各领域对电能的需求不断加大,形成电能紧张的局势。在生态环保、可持续发展理念深入人心的情况下,传统的发电产业已经逐渐失去了继续开发的市场,新能源在市场经济中表现得异常活跃。风能是一种经济能源,可以应用于风电场的发电,对缓解电力供应紧张局面具有重要的战略意义。但是,由于风电场在运营管理环节存在各种各样的问题,实际的生产效率受到很大的影响,必须采取相应的措施加以解决。而监测诊断技术的应用,为解决风电场运营管理中存在的问题提供了技术支撑。
1风电场运营管理的重要意义
在风电场的运营管理过程中,监测诊断技术的应用应注意四个方面的问题:(1)保证设备的运行安全,防止突发事件的发生;(2)保证设备的工作精度,提高产品质量;(3)实施状态维修,及时消除安全隐患;(4)减少设备事故带来的环境污染。风电场监测诊断技术若能得到科学合理的应用将具有重要意义:(1)加强风电场的运营管理,可以及时发现运营管理中的问题,并及时采取有效措施加以解决,有利于保证风电场生产工作的正常运行;(2)加强风电场的运营管理,能够在实践过程中不断克服运营管理的不足,提高运营管理水平;(3)加强风电场的运营管理,能够改善运营管理的各个环节,提高风电场的生产水平和综合效益。
2风电场运营管理存在的问题
2.1风力资源的预测技术低。风力资源是一种自然资源,具有“取之不尽,用之不竭”的特点。与此同时,风力的变化很快,预测起来比较困难。对风电场而言,如果能在生产的过程中对风力资源进行科学、准确的预测,将会给企业的运营管理带来巨大的帮助。但是从当前我国风电场对风力资源的预测来看,预测技术不足的短板体现得非常明显,存在许多不足之处。2.2设备故障维修能力不足。风电场的正常运行,离不开发电设备的保证。如果在发电设备运行过程中出现故障,则整个风力生产作业都会受到不同程度的影响。在日常的生产运行过程中,风电场设备管理人员应当加强对设备运行状态的观察,一旦有发生故障的迹象,立即采取相应措施加以防治。受专业水平、故障维修能力等因素的影响,风电场设备的故障预防及处理存在很多问题。比如,在线振动监测设备、防火监测设备在运行过程中出现问题,但是工作人员却没有及时察觉,设备的正常运行受到很大影响。2.3管理制度方面不完善。任何管理活动的顺利开展,都离不开完善的管理制度,管理制度的完善与否,直接关系到管理的效率和质量。不可否认的是,我国风电场的运营管理制度在近年来的发展过程中得到了不断的完善,为运营管理工作的实施提供了科学的制度保障。但是,随着新情况、新问题的不断出现,运营管理制度难以做到与时俱进,导致运营管理的效率和质量受到影响。
3监测诊断技术在风电场运营管理中的应用
发电设备无损检测技术研究
摘要:风力发电作为我国可再生能源的核心组成部分,在国家大力倡导下取得迅速发展及应用。风力发电涉及材料学、空气动力学、计算机技术、结构力学等学科,属于集成化的新能源开发技术。由于风力发电设备运行环境恶劣且体量较大,需定期对设备进行无损检测,评估设备运行状态。本文以风力发电设备无损检测技术为切入点,研讨塔筒、电机设备、电力电子构件、齿轮箱、风电系统等的无损检测技术及技术应用方式。结合风电机叶片缺陷评估,引入红外热像无损检测,分析叶片无损检测方式,降低叶片过度维护,以及事后维护带来的高昂运维成本,确保风电系统稳定运行。
关键词:发电设备;风力发电;无损检测技术;红外热像无损检测
各国大力发展新能源事业,联合国将全球可再生清洁能源认定为重点投资方向。基于此,我国将风能作为未来经济增长的主要能源来源之一,并大力建设风力发电系统。目前,我国风力发电基础设施建设取得了一定成就,研究重点将朝向运维发展,即稳固系统运行,加强安全性评估及可靠性评价。因此,需大力发展风力发电设备无损检测技术,延长风力发电系统使用寿命,减少故障损失,提高经济效益。
1风力发电设备无损检测技术及应用
1.1监测发电机与电力电子设备
风力发电机包括电力电子与电磁两部分,此类构件可靠性是评估风电设备检测水平的重要指标。风力发电设备运行过程中,受振动、湿度、温度、封装形式等影响都会对内部构件造成影响,严重者导致零件损坏。风力发电设备收集的风能先经过叶轮,再经过主轴与齿轮箱,经发电机转换后变成电能。风力机叶片是一种弹性体,在风力作用下叶片结构可形成向上的空气动力与惯性力,其交变性无法确定,并且随机性较强。在力的耦合作用下,发电机因不可抗力的振动而产生自激共振,即颤振。如果颤振处于发散状态,将导致风力发电设备损坏。除此之外,风力发电机组运行过程中会因诸多原因而产生较大振动,振幅与振动频率超过风机荷载将影响风机稳定运行。目前,应用在风力发电设备的无损检测方式包括:热成像技术、电磁传感技术、扫地雷达技术等,同时还可通过模态分析法对系统稳定性与寿命进行评估,以此提高风力发电机故障检测科学性。除风电机机械部分易造成设备损坏之外,风力、温差、潮湿条件也会导致线路绝缘耐压、腐蚀及接触电阻的失效。风力发电机和电力电子元件的电子类故障涉及定子线圈绝缘故障、转子故障、激励线圈绝缘故障等。转子与顶底电路故障包括线圈断裂、线路短路、线圈匝间短路或相位对位短路等,同时焊接点松动也会导致线路故障。传统电动机电流信号分析法无法适用于发电机工作时,仅能进行线下测试或设备停运时检修。从电力电子方面分析,电流通过半导体器件时功率损失引起的发热是导致发电机元件损坏的主要原因之一,在工作电压与载流能力持续增加的背景下,温度与检测系统对电力电子设备可靠性评估具有非常显著的意义。所以,目前对风力发电机的实时监测技术与方法仍面临严峻挑战,有必要加大无损检测技术研究力度,对电力电子系统进行实时监控。