制动技术范文10篇

时间:2024-04-16 02:34:53

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇制动技术范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

制动技术

汽车线控制动技术思考

摘要:作为汽车制动系统的重要发展方向,分析线控制动技术类型及研究现状,阐述其功能特点和工作原理,并针对当前热门的I-EHB集成式线控制动技术进行详细了叙述。通过分析:相较于传统制动技术,I-EHB集成式线控制动技术在无人驾驶、再生制动方面具有明显优势,能更好地适应不同工况下的车辆,具有广泛的研究前景和应用前景。

关键词:线控制动;I-EHB;集成式;再生制动

科技进步推动汽车技术飞速发展,汽车质量与性能大幅提高,我国汽车保有量也越来越大。车速的加快造成交通事故的增多,对人身安全造成了巨大的威胁。由此,汽车安全稳定高效制动正变得越来越重要。汽车正向着智能化、电动化、网联化、轻量化方向发展,以纯电动汽车和无人驾驶为代表的车型成为当前汽车行业发展的主流。技术的升级提升了汽车性能,性能提升要求更安全稳定高效制动。但是传统制动技术体积大、响应慢,无法适应新型车辆的需求,不利于汽车轻量化[1]。线控制动技术不仅解决了传统制动带来的一系列问题,更为汽车制动的快速发展带来了新的契机与方向。

1线控制动技术简介

1.1线控制动技术种类。线控制动技术从航空技术领域引入,正被越来越多的供应商和主机厂所重视。线控制动取消了传统制动的真空单元,以电控模块来实现制动力,同时有着不小的体积优势。汽车线控制动系统目前主要分为电子液压制动(EHB)和电子机械制动(EMB)两种[2]。EMB系统采用电子控制,通过伺服电机直接作用于轮缸产生制动力。由于取消了主缸、液压管路等复杂的零部件结构,制动更迅速,制动力的传递效率得到提升[3]。EHB是将传统液压制动技术的动力源替换为电子控制系统,他取消了传统制动系统中的真空供给部件和真空助力部件,用电子系统来提供动力源[4-5],同时保留了成熟的液压部分,可以在电子助力失效时提供备用制动,确保车辆安全。传统车用12V电源即可驱动EHB系统,无需设计新的供能系统[3,6]。1.2线控制动技术发展现状。自20世纪末开始,世界各主要制造商都对线控技术展开研究并取得了一定的阶段性成果。进入21世纪后,线控制动的发展更加迅速,有些已经装备在量产车上。如大陆公司(Continental)的电子液压制动系统MKC1,已小批量应用在量产车上[7];博世公司成功开发出iBooster系统,并集成多种主动安全配置,提升车辆安全性[1,8]。而在国内,以清华大学、吉林大学为首的高校大多数仅仅是对线控制动理论及控制方法的提出,实车试验及系统可靠性研究方面还较少[9]。其中吉林大学提出一种电子机械制动,利用电机和减速机构方案制动[10]。清华大学的王治中等提出了一种分布式电液复合制动系统,同济大学的熊璐等人提出了双动力源电液制动系统等,但目前均未实现量产[11]。

2汽车线控制动工作原理

查看全文

变频器制动技术分析论文

论文关键词:变频制动新技术

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

查看全文

变频器制动技术研究论文

论文关键词:变频制动新技术

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

查看全文

变频器的制动技术分析论文

论文关键词:变频制动新技术

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

查看全文

变频器的制动技术分析论文

论文关键词:变频制动新技术

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

查看全文

变频器制动技术研究论文

1能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

2、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

查看全文

停车制动电子控制技术发展分析论文

【摘要】电子驻车系统(EPB:ElectricalParkingBrake)是指由电子控制方式实现停车制动的技术,把长期使用的传统型手驻车制动模式推进了一大步。本文全方面介绍EPB系统的基本理论,基本原理以及在开发工作中需要注意的事项。

【关键词】EPB电子驻车应用

一、EPB与传统手制动相比的优点

1.1EPB系统可以在发动机熄火后自动施加驻车制动。驻车方便、可靠,可防止意外的释放(比如小孩、偷盗等)。

1.2不同驾驶员的力量大小有别,手驻车制动杆的驻车制动可能由此对制动力的实际作用不同。而对于EPB,制动力量是固定的,不会因人而异,出现偏差。

1.3可在紧急状态下组委行车制动用。

查看全文

汽车电子机械制动系统技术发展探讨

摘要:相比于传统汽车的制动系统,电子机械制动系统(Electro-mechanicalBrakingSystem,EMB)具有制动性能更优、结构更加简单紧凑、不会污染环境等优势。分别对电子机械制动系统的制动器执行器技术、制动控制技术以及线控制动踏板技术进行了分析总结,指出电子机械制动系统的技术还存在的问题,对电子机械制动系统的未来发展方向给出预测,对电子机械制动系统的进一步研究提供参考。

关键词:汽车;电子机械制动;执行器;控制技术;线控制动踏板

电子机械制动系统属于线控制动系统的一种,其通过线束传递制动信号和制动能量,线控技术的使用使得制动系统抛弃了原有的复杂而又承重的液压管路和元件,整个系统的电子化、集成化能力更强。对于汽车上现在应用的所有制动和稳定功能都要求制动力的稳定性和精确性,电子机械制动系统可以通过对制动电机的精确控制实现制动力的稳定输出。且可以通过在控制器中添加制动程序实现更多的功能,无需再额外配置复杂的液压管路和机械部件[1-2]。根据制动器结构可将线控制动系统分为两大类:电子液压制动系统(Electro-hydrau-licBrake,EHB)和电子机械制动系统(Electro-mechani-calBrake,EMB)[3]。后者相对于前者实现了制动结构的全机械化,具有制动更快、效果更好的特点是线控制动系统的最终形态。电子机械制动系统可以分成5个组成模块:(1)线控制动踏板模块,主要由踏板位移传感器和制动感觉模拟器两部分构成,负责采集踏板位置和变化速度等信息;(2)中央电子控制模块,接收踏板位移传感器感知的踏板位置和变化速度等信息,经过信号处理分析决策后产生相应的制动信号;(3)车轮制动模块,由制动执行器、执行器控制单元以及相关传感器构成,将制动信号转变为具体的制动动作;(4)车载电源,为电子机械制动系统供电,主要是为制动电机以及系统传感器等提供电能;(5)车载计算机网络,实现车轮制动模块和中央电子控制模块以及线控制动踏板模块的通信[4-7]。电子机械制动系统中车轮制动模块、中央电子控制模块以及线控制动踏板模块是系统的重点和难点,也是提升系统性能的关键点。本文作者将从EMB执行器技术、制动控制技术以及线控制动踏板技术3个方面进行分析。

1EMB执行器技术

制动执行器作为整个系统的核心部件之一,通常由驱动电机、增力装置、运动转换装置和制动钳体四部分构成。现有的制动执行器主要运用行星齿轮机构、增力杠杆机构、涡轮蜗杆机构或楔形机构作为增力装置。运用滚珠丝杠机构,偏心轮机构或齿轮齿条机构作为运动转换装置。通常根据驱动电机的布置位置将执行器分成内置和外置两大类[8-9]。主要有以下几种具有代表性的结构:ContinentalTeves公司的Drott,RIETH等[10]在2001年申请了电子机械制动器结构专利。采用了滚珠丝杠加行星齿轮组合的方式并驱动电机内置方式,当电机转子正向转动时带动太阳轮转动之后经过行星齿轮系的两级减速后由行星架输出转矩,行星架带动滚珠丝杠运动,最后由顶杆推动制动块压紧制动盘实现制动,反之则解除制动。设计棘轮结构实现驻车制动的功能。该方案需要手动调节制动间隙,电机外置式设计使得整个机构轴向尺寸较大。西门子公司采用了滚珠丝杠和增力杠杆组合的结构[11],该方案采用电机内置将电机与滚珠丝杠融合在一起,当通电时转子转动作为丝杠带动螺母水平位移,螺母与心轴相连,心轴也随之运动,心轴上的力经过增力杠杆被增大,力和位移经过传动套筒和制动活塞传递到制动钳块,制动钳块在力和位移的作用下夹紧制动盘完成制动。由于使用增力杠杆使得该结构具有自动间隙调整的功能。西门子VDO公司采用楔形结构作为增力装置[12]。系统采用两台对置式的电机作为动力源,制动时两台电机以相反的方向转动时使推块朝主动楔形块小端方向运动,主动楔形块的运动使得从动楔形块和与之固接的制动块产生向上位移压紧制动盘完成制动,反之朝楔形块大端方向运动制动解除。该方案采用楔形块作为自增力机构具有巨大的增益系数,采用了双电机结构降低单个电机的功率要求。但由于楔形机构巨大的增益系数,为保证制动力的精确稳定,对电机的控制精度的要求也相对比较高。Bosch公司的KELLER[13]在2001年申请了带有电磁离合器的制动器结构。该方案属于电机外置式,当驱动电机通电时电机输入轴带两级行星轮系运动,动力经过行星轮系后传递给心轴,心轴带动滚珠丝杠机构运动完成运动转换过程,最终由丝杠螺母推动制动钳块压紧制动盘完成整个制动过程。通过一个杯形弹簧将摩擦盘与二级行星轮系的太阳轮连接在一起,摩擦盘与二级行星轮系的行星齿圈以同样的方式固接。该方案通过使用两套电磁离合器,实现减速增矩、调整制动间隙、实现驻车等功能。清华大学的宋健团队设计一种采用曲柄连杆结构作为运动转换装置的EMB制动器,曲柄连杆结构将电机的旋转运动转变为平动推动制动块压紧制动片。同时利用曲柄连杆机构在死点附近整个机构有非常大的力增益系数的特点,实现对制动力放大作用。该方案对加工装配的精度要求较高,容易出现制动时卡死的现象,且机构不具备自动间隙调整的功能[14]。北京理工大学的沈沉团队在2007年提出了一种电子机械盘式制动器结构。它的最大特点就是模块化,整个机构又可分为:驱动部分、一级减速部分、滚珠丝杠螺旋传动部分[15]。吉林大学的李静团队在2008设计了一款EMB制动器,该制动器结构上也采用了行星齿轮与滚珠丝杠组合的形式[16]。这两种结构与ContinentalTeves公司执行器结构类似,区别在于结构只采用了一级行星齿轮系进行减速增距。2010年同济大学的刘志乙团队在制动器结构加入了电磁离合销实现了几种不同的工作模式,实现了减速器减速比改变,且具有间隙自动调整和制动力保持功能[17]。该结构与Bosch公司结构有异曲同工的效果,都是通过电磁机构实现不同的制动效果,但相对而言结构比较复杂。现阶段就市场的占有率而言电子机械制动器主流设计方案是以ContinentalTeves为代表的行星齿轮和滚珠丝杠相配合的设计方案,该方案结构相对简单、减速比较大,对电机的要求不高,能够实现行车制动和驻车制动两个功能,技术成熟、性价比较高。较具发展潜力的方案是以西门子为代表的具有自增力效应的电子楔形制动器方案,该方案采用两个电机,降低了对电机性能的要求,提高了系统安全性,楔形机构制动效果显著,整体机构紧凑,机械安装结构较少便于装配。综合多种制动器结构的优缺点可以得出,现阶段制动执行器设计要求结构简单、性能稳定、便于控制、整体空间结构紧凑、尺寸尽量小便于安装,制动间隙能自动调整。但是以上两种方案都无专门的间隙自动调节功能,是以后需要改进的地方。

2EMB控制技术

查看全文

电子机械制动系统设计分析

摘要:21世纪电子系统是发展最快、影响范围最广的技术之一,生产、生活、军事、管理等各个领域,都离不开电子技术。在汽车制动方面,电子机械技术有较好的发展前景,其中电子机械制动系统将取代手动控制,更加人性化。

关键词:电子机械;制动系统;EMB

科学技术的迅猛发展大大推动了我国各行各业的发展,其中传统的液压制动系统逐渐被电子机械控制技术所取代,电子机械制动系统是一种以电动机来驱动控制钳块,从而实现对车辆制动的控制,尤其是该制动系统具有响应时间短、系统硬件体积小和质量轻等特点,在现代工业中广泛运用。

1研究目的和意义

我国的汽车工业制造水平,在一定程度上反应出了我国电子机械技术水平。汽车电子技术水平发展越高,汽车的操作性与安全性越有保障,因此汽车的制动系统决定了汽车的安全性[1]。现阶段,汽车的制动控制技术的发展,已经进入到了电子机械制动技术发展应用的阶段,对此技术的深入研究具有十分重要的意义。

2研究现状

查看全文

诠释下运带式输送机的制动控制系统研究

摘要:随着工业生产的快速发展,采用带式输送机的愈来愈多。制动装置是下运带式输送机的关键设备之一。近年来,随着我国下运带式输送机的不断发展,制动技术也在不断提高。本文对下运带式输送机的运行机理进行了简单的分析,并对常用的几种制动装置的原理和特点进行了比较。

关键词:下运带式输送机制动装置

下运带式输送机是煤矿生产中的一种重要的运输设备,其可靠平稳运行对保证矿井正常、安全、高效生产有着重要的意义。目前常用的制动系统有机械闸块制动,电气动力制动,液力制动和液压制动等。电气制动性能较稳定,但在突然断电时制动系统就无法工作;液力制动不仅系统复杂,并且在转速较低的情况下制动力矩迅速减小,仍需机械闸块进行干摩擦制动;而对于机械闸块制动,由于其会产生火花及烧灼现象,对矿井生产安全产生危害,因而液压制动的采用就显得越来越迫切。

1制动控制系统的原理及基本构成

1.1制动控制系统的原理

随着长距离、大运量、大功率的下运带式输送机的广泛应用,其制动装置功能的完善、性能的好坏,直接影响着下运带式输送机的安全与可靠运行。主要体现在以下几个方面:

查看全文