余弦范文10篇
时间:2024-04-12 16:40:05
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇余弦范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
正弦和余弦教案
教学建议
1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.
2.重点、难点分析
(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.
(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
正弦和余弦数学教案
教学建议
1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.
2.重点、难点分析
(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.
(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
正余弦函数图象教案
一、教材分析:
本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法.为今后学习正弦型函数y=Asin(ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用.
二、学情分析:
在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础。动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。
三、教学目标:
依据教学大纲的要求,制订如下三维教学目标:
两角差的余弦公式教案
【教学目标】
【知识与技能】
①了解两角差的余弦公式的推导;
②掌握两角差的余弦公式并能对公式进行初步的应用。
【过程与方法】
①经历大胆猜想---初步验证---理论证明---应用与拓展的数学化的过程让学生感受到知识的产生和发展;
两角差的余弦公式教案
教学目标
知识与技能
①了解两角差的余弦公式的推导;
②掌握两角差的余弦公式并能对公式进行初步的应用。
过程与方法
①经历大胆猜想---初步验证---理论证明---应用与拓展的数学化的过程让学生感受到知识的产生和发展;
两角差的余弦公式教案
一.教学目标
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.
2.通过指数函数与对数函数在图象与性质上的对比,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.
3.通过观察指数函数与对数函数在图象,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.
二.教材分析
对数函数是函数中一类重要的基本初等函数,它是在学生已经学过指数函数、对数与对数运算基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
知三角函数值求角教案
教学目标:了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角
教学重点:掌握用反三角函数值表示给定区间上的角
教学难点:反三角函数的定义
教学过程:
一.问题的提出:
在我们的学习中常遇到知三角函数值求角的情况,如果是特殊值,我们可以立即求出所有的角,如果不是特殊值(),我们如何表示呢?相当于中如何用来表示,这是一个反解的过程,由此想到求反函数。但三角函数由于有周期性,它们不存在反函数,这就要求我们把它们的定义域缩小,并且这个区间满足:
正切和余切数学教案
一、教学目标
1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。
2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。
3.培养学生独立思考、勇于创新的精神。
二、学法引导
1.教学方法:运用类比法指导学生探索研究新知。
正切和余切教案
第一课时
一、教学目标
1.使学生了解正切、余切的概念,能够正确地用、表示直角三角形(其中一个锐角为)中两边的比,了解与成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系。
2.逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力。
3.培养学生独立思考、勇于创新的精神。
二、学法引导
三角函数解题应用分析论文
三角函数是学习高等数学的必备基础知识之一,学习时要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
一、知识整合
1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.
2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.
二、方法技巧
1.三角函数恒等变形的基本策略。