圆的面积范文10篇
时间:2024-04-11 10:56:46
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇圆的面积范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
圆的面积教案
教学内容:小学数学义务教育教材第十一册p129---p130
教学目的:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:圆面积公式的推导。
“圆的面积”说课设计
说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
课堂教学程序设计 本节课分四个环节来设计教学。
圆的面积教学研究论文
说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
课堂教学程序设计
圆的面积数学教案
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
圆的面积设计管理论文
教学重难点及教法说明
说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
圆面积抽象教学管理论文
圆是小学数学几何图形教学的最后一部分内容。它是在学生学习了直线图形以及圆的认识和周长之后进行的。在此之前,学生虽然已经学习了长方形、正方形、三角形、梯形等几何图形知识,但是在圆的面积公式教学中,涉及到以直代曲的转化过程及极限的思想,认识进入了一个新的领域,这对于抽象思维能力较低的小学生来说,是学习中的难点。为了突破这一难点,我采用直观演示法进行教学,化抽象为直观,用极限的思想展示以直代曲的转化过程,使学生对圆面积公式的推导有一鲜明、正确的感性认识。下面谈谈我对这一内容的教学设想。
一、分割圆面,认识曲直关系
1.教师演示。将一个圆对折两次,并沿折痕剪开,贴在黑板上,如图(1)所示。指导学生分析观察,并设问:(1)图1是由哪些线组成的?(2)这些线与圆的半径和周长有何关系?
附图{图}
图(1)
接着再将图(1)中的四个图形分别对折、剪开并贴在黑板上,如图(2)所示。
面积计算公式教法分析论文
教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。
〔第一种教法〕
(1)复习长方形面积计算公式。
(2)让学生自学课本中推导圆面积计算公式的过程。
(3)教师边用教具演示,边要求学生回答:
①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?
数学课堂艺术管理论文
1.提问的明确性。提问是为了引导学生积极思维。提的问题只有明确具体,才能为学生指明思维的方向。如,有一位新教师教学“异分母分数加减法”,引入1/2+1/3后提问:“1/2与1/3这两个分数有什么特点?”有的答:“都是真分数。”还有的答:“分子都是1。”显然,这一提问不明确,学生的回答没有达到教师的提问意图。如果改问:“这两个分数的分母相同吗?分母不同的分数能不能直接相加?为什么?”这样的提问既明确,又问在关键处,有助于学生理解为什么要通分的算理。
2.提问的思考性。教师要在知识的关键处、理解的疑难处、思维的转折处、规律的探求处设问。在知识的关键处提问,能突出重点,分散难点,帮助学生扫除学习障碍。在思维的转折处提问,有利于促进知识的迁移,有利于建构和加深所学的新知。如,教“圆的面积”时,教师组织学生直观操作,将圆剪开拼成一个近似长方形,并利用长方形的面积公式推导出圆的面积公式。这里知识的内在联系是拼成的近似长方形的面积与原来圆的面积有什么关系?拼成的近似长方形的长和宽是原来圆的什么?为了适时提出这两个问题,教师先让学生动手操作,将一个圆平均分成8份、16份,剪拼成一个近似长方形。教师提出:
①若把这个圆平均分成32份、64份……这样拼出来的图形怎么样?
②这个近似长方形的长和宽就是圆的什么?
③那么怎样通过长方形面积公式推导出圆的面积公式?学生很快推导出:长方形面积=长×宽圆的面积=半周长×半径=(2πr/2)×r=πr[2]在规律的探求处设问,可促使学生在课堂中积极思考,让学生通过自己的思维学习新知识,得到新规律,可以让他们感受到学习的乐趣。
3.提问的灵活性。教学过程是一个动态的变化过程,这就要求教师的提问要灵活应变。如,一位教师教了整数减带分数后,要求学生做5-(2+1/4)等于多少。有一个学生只把整数部分相减,得出3+1/4;另一个学生从被减数中拿出1化成4/4,相减时5又忘了减少1,得3+3/4。在分析这两个学生做错的原因并订正后,教师没有到此为止,而是提出:如果要使答案是3+1/4或3+3/4,那么这个题目应如何改动?这一问,立即引起全班学生的兴趣,大家纷纷讨论。这一问题恰恰把整数减带分数中容易混淆或产生错误的地方暴露出来,这种问题来自学生,又由学生自己来解决的方式,不仅对发展学生的思维能力大有裨益,而且能调动学生的学习积极性。
数学课堂艺术管理论文
1.提问的明确性。提问是为了引导学生积极思维。提的问题只有明确具体,才能为学生指明思维的方向。如,有一位新教师教学“异分母分数加减法”,引入1/2+1/3后提问:“1/2与1/3这两个分数有什么特点?”有的答:“都是真分数。”还有的答:“分子都是1。”显然,这一提问不明确,学生的回答没有达到教师的提问意图。如果改问:“这两个分数的分母相同吗?分母不同的分数能不能直接相加?为什么?”这样的提问既明确,又问在关键处,有助于学生理解为什么要通分的算理。
2.提问的思考性。教师要在知识的关键处、理解的疑难处、思维的转折处、规律的探求处设问。在知识的关键处提问,能突出重点,分散难点,帮助学生扫除学习障碍。在思维的转折处提问,有利于促进知识的迁移,有利于建构和加深所学的新知。如,教“圆的面积”时,教师组织学生直观操作,将圆剪开拼成一个近似长方形,并利用长方形的面积公式推导出圆的面积公式。这里知识的内在联系是拼成的近似长方形的面积与原来圆的面积有什么关系?拼成的近似长方形的长和宽是原来圆的什么?为了适时提出这两个问题,教师先让学生动手操作,将一个圆平均分成8份、16份,剪拼成一个近似长方形。教师提出:
①若把这个圆平均分成32份、64份……这样拼出来的图形怎么样?
②这个近似长方形的长和宽就是圆的什么?
③那么怎样通过长方形面积公式推导出圆的面积公式?学生很快推导出:长方形面积=长×宽圆的面积=半周长×半径=(2πr/2)×r=πr[2]在规律的探求处设问,可促使学生在课堂中积极思考,让学生通过自己的思维学习新知识,得到新规律,可以让他们感受到学习的乐趣。
3.提问的灵活性。教学过程是一个动态的变化过程,这就要求教师的提问要灵活应变。如,一位教师教了整数减带分数后,要求学生做5-(2+1/4)等于多少。有一个学生只把整数部分相减,得出3+1/4;另一个学生从被减数中拿出1化成4/4,相减时5又忘了减少1,得3+3/4。在分析这两个学生做错的原因并订正后,教师没有到此为止,而是提出:如果要使答案是3+1/4或3+3/4,那么这个题目应如何改动?这一问,立即引起全班学生的兴趣,大家纷纷讨论。这一问题恰恰把整数减带分数中容易混淆或产生错误的地方暴露出来,这种问题来自学生,又由学生自己来解决的方式,不仅对发展学生的思维能力大有裨益,而且能调动学生的学习积极性。
简述小学数学的建模教学
一、创建问题情境,让学生感受数学的形成
目前,新课改虽然已经普及,但是在教学实践中,仍然能看见“知识技能”与“过程方法”脱轨的痕迹,教师还是以言传身教的方式将自己的思维强加在学生身上,没有完全将思维探究过程教给学生。然而,在运用数学建模思想教学之后,就可以弥补“知识技能”与“过程方法”脱轨方面的不足。针对新课标强调的数学建模观念以及小学生的年龄特征和认知状况,在课堂教学中,教师应该明确引导学生认识建立数学模型和建模过程的重要性,让学生在自主探究的过程中感受数学模型的形成并合理地使用数学模型。如在同分母数的加减法中,我在课件中呈现出这样一组数据,24+34;56+36;……56999+24999等,学生都能很轻松地回答出计算结果。随即我问道:“同学们都能这么快回答出计算结果,想必你们都有自己的小秘诀吧?”学生异口同声:“只要分母不变,将分子相加在一起就可以了。”我再问:“同学们知道为什么只要分母不变,分子就能相加吗?”有的学生明白了,有的学生对知识点还有点模糊,随后我用课件呈现一道由28+38=58引发出来的填空题:2个(%%)+3个(%%)等于5个(%%)。学生都很快地给出了答案18。那些不明白的学生也豁然开朗了。从这一个探究过程可以看出,让学生从实际角度出发,对所看到的事物进行分析比较,在理解分子相加分母不变的同时也就完成了算法模型的建模过程。由此可见,从学习和发展角度出发,建立数学模型是帮助学生提高数学思维的有效方法,能让学生通过建模的过程将知识技能同步,既解决了数学问题又提升了其数学素养。
二、在习题训练中,让学生孕育建模之花
数学教学是培养学生知识积累、解题思维以及数学思想抽象化的过程。因此,教师应该有层次地设计基础习题,让练习起到孕育数学建模的目的。如在讲“圆的面积与周长”时,我列举了一道习题:如图,正方形的面积是6cm2,圆的面积是多少?为此我还设置以下的解题判断:同学们发现正方形与圆之间的关系了吗?其中一位学生说:“圆的半径就是正方形的边长,可以假设正方形的边长为A,A的平方等于6,圆的半径就是3cm,再计算3.14X(3×3)=28.26cm2。”随后我问:“这位同学的算法对吗(学生们开始自主探讨)?”有个学生考虑了一下后,“老师,不对,R的平方等于两个R相乘,不是两个R相加,所以这道题不能这么做。”我再问:“那有没有别的方式来计算圆的面积呢?”学生回答:“可以根据圆的面积公式直接将R的平方代入公式,也就是3.14×6=18.84cm2。”这位学生的回答我十分满意,“同学们,能不能将它作为一种规律性尝试使用呢?”学生回答:“以正方形的定点为圆心,变长为半径,圆的面积就等于R乘以正方形的面积。”从上述的习题不难看出,教师在课堂教学中不能仅满足于学生算出答案,而要让学生在计算的过程中去深度地探究问题。让学生找出正方形与圆之间的关系,也就是在深度探究的过程中建立了属于学生自己的数学模型,这也是在培养学生的归纳意识和提炼问题的能力。数学的探究过程就是提炼和探究的过程,只有经历这个过程,数学知识才能得到积累沉淀,从而让学生拥有更大的智慧。因此在教学中要适时地引导学生对所学问题进行归纳总结,并且建立一个简单易懂的数学模型。综上所述,教师应该从建模的角度去研读教材,充分发掘教材中的问题情境并引导学生建立数学模型解决数学问题。同时,要利用切合实际的教材内容让学生自主探究亲自操作体验,逐步培养学生的建模意识和接替方法。
本文作者:周明新工作单位:江苏省南通开发区实验小学