优化设计范文10篇

时间:2024-04-10 17:56:43

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇优化设计范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

优化设计

车辆优化设计中的试验设计

一、复杂正交试验算法开发

通常情况下,工程问题中的正交试验强度通常默认为2,即:一个N×k矩阵,如果它的任意2列中所有可能水平都出现并且出现的次数相同,则称这个矩阵为正交矩阵。对于一些简单的正交试验可以查表或者通过借助Isight等优化设计软件提供的正交试验来获得,但对于复杂正交试验,目前还没有一个准确快速的途径来获得,必须通过数学计算进行构造。在过去的几十年中,许多数学家和统计学家都曾致力于正交矩阵的构造,通过实践发现,比较可行的算法有矩阵的划分与求和、矩阵的并列以及投影矩阵法等。以下为各种正交试验构造算法总结描述。1单水平复杂正交试验设计对于各因子水平相同的情况,可以利用“划分”与“求和”的方法。利用该方法建立的正交矩阵基本表达式可记为个p-1水平,称为p3分列记列名为C;将此列依次与前面的每列按上面的加法分别计算出p-1个列,共计(p+1)×(p-1)个列,列名按指数化简表示,直到“划分”完毕,依次与前面的每列“求和”完毕为止,即可得到完整的单水平正交矩阵,其中的交互作用列可按列名中的指数作列计算表示。2多水平复杂正交试验设计1并列法对于一般的水平数不同的变量进行正交试验设计可以由水平数相等的正交矩阵通过“并列法”改造而成。以多水平正交矩阵L27(3991)为例,具体做法如下:首先通过1节中所述的方法获得正交矩阵L27(313)。取出表中按照1节中方法构造的第1,2列,两列中的数对共9种:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),把这9种数对依次变成1,2……9,就可以把第1,2列合并成一个9水平列,并作为新矩阵的第一列。去掉第1,2列的交互作用列。将其余的5,6……13列依次列为2,3,4……10列。即可得矩阵L27(3991)。2投影矩阵法正交投影定理是一个有效的构造复杂正交试验的方法。在投影矩阵的正交分解中,常用到的分解方法根据矩阵论定理对于任意的置换矩阵S以及正交矩阵L都有即可对正交矩阵进行简化分解,通过简化分解后的正交矩阵代入上述公式则可以完成复杂的正交矩阵的构造。

二、复杂正交试验设计软件开发

根据上述几种算法,有针对性地开发了一款适用于整车优化设计的复杂正交试验设计软件。软件界面。该软件可以构造样本数在600以内的能够满足车辆优化设计要求的绝大多数正交试验矩阵。用户可以通过以下两种方式进行DOE矩阵的构造。方式1:通过样本数构造DOE矩阵。工程技术人员可以首先根据项目确定的时间要求和计算资源计算出允许DOE工作完成的样本数,通过输入确定的样本个数来构造DOE矩阵,进而筛选可能参与优化的设计变量及水平。方式2:通过变量数构造DOE矩阵。对于已经明确了设计变量和工况要求的优化项目,样本个数已经由设计变量确定,工程技术人员可以有针对性地通过输入变量数查找符合变量和水平要求的DOE矩阵。同时该软件主界面允许用户设置矩阵和样本的选择容差,对于无法构造出完全满足前提要求的矩阵的情况,工程师可以Tolerance选项修正优化的前提条件,Tolerance选项允许输入的最大容差为100,以获得准确的正交试验矩阵。在确定好试验设计矩阵之后,工程师可以按照设计要求输入每个变量的属性,包括名称、是否连续、详细水平取值等,并通过自动导出EXCEL表格或自定义模板格式的形式生成DOE矩阵。

三、基于复杂正交试验的车辆优化设计

具备了通过软件构造复杂试验设计矩阵的能力,可以在前期大幅度提高试验设计精度,并且可以快速进行试验设计工作,最终保证高精度的优化设计结果。以下列举了几个应用复杂正交试验完成的车辆优化设计成功案例。1发动机罩减重优化在某三厢紧凑型轿车开发中,其发动机罩优化参数包括2个形状变量,1个材料变量,9个厚度变量,5个尺寸变量,应用L64(2341084)正交矩阵进行试验设计,优化限制条件为子系统模态、各项刚度、强度以及行人保护性能要求,通过Isight软件进行优化集成,最终优化设计结果满足各项性能指标,同时重量比原始设计方案减轻5%。优化前后各设计参数对比,其中设计变量对某设计指标的贡献量分析结果。2后举升门铰链刚度问题改善某MPV车型开发期间,后举升门铰链刚度在样车试验中出现塑性变形,需要通过优化设计方法对该问题进行改进。考虑到后期更改成本和项目开发时间,仅对相关区域各车身零件板厚进行优化,共涉及零件8个,采用L100(56102)构造DOE矩阵,通过构造响应面及集成优化设计,在保证重量不增加的前提下,整体刚度水平提高了46%,解决了举升门铰链变形问题。优化前后设计变量及输出指标结果如表1所示,其中某两个设计参数与一个刚度指标关系的三维近似模型如图6所示。3白车身前期优化设计优化设计已经成为目前上海通用白车身前期开发的标准工作流程,以某小型三厢轿车白车身开发为例,设计变量涉及白车身及副车架尺寸、厚度、形状等41个变量。采用L256(48833)正交矩阵进行试验设计,设计工况包括白车身结构、NVH和被动安全性等11个工况。为保证后期的优化方案能够正确地指导项目开发方向,对通过该正交试验矩阵建立的所有输出指标的数学模型精度进行了深入的分析研究。某优化指标的的误差分析结果。可以看出,采用多种误差分析方法统计的数学模型误差均在可接受范围之内。该项目通过后期多目标优化设计,清晰给出了各设计变量及性能指标之间的相互关系,将设计空间内的白车身架构性能最大化,同时有效地控制了前期车身重量指标,做到了前期白车身的效率最优化。其中各设计变量对于某安全性能的贡献量结果。以此优化结果作为后续开发的基础,避免了后期开发的盲目性,保证了后期开发的正确方向,按照该优化设计思路,已成功完成了多款新车型的前期开发。部分设计变量及设计指标优化前后取值。

查看全文

略谈后置油门优化设计

一、结构设计

在后置油门的优化设计中,其外部壳体和内部传感器都必须满足防水、防潮、防震、防灰尘、可靠性高、寿命长等性能要求。1机械结构工作原理:当后置油门手柄旋转时,,和手柄相连接的磁体旋转,使作用于霍尔元件上的磁感应强度发生改变,输出电压相应变化,以此反映出旋转角度的变化。2传感器结构原霍尔式角位移传感器结构如图2,和新霍尔式角位移传感器结构如图4对比原霍尔式角位移传感器使用的霍尔元件是直立式,单信号输出,必须设计一封闭式磁路与之配合,磁体装在转子中,转子和壳体有一旋转间隙,此间隙因受潮或灰尘进入等原因,转子容易发生卡住现象,导致后置油门不能正常工作。新霍尔式角位移传感器使用的是可编程三轴霍尔元件,平面封装,双信号输出,磁力线通过空气传导作用于霍尔元件的表面,当手柄旋转时,和手柄相连接的磁体旋转,作用于霍尔元件表面的磁感应强度产生变化,输出电压相应变化,反映出旋转角度的变化。旋转体与传感器没有直接接触,就不会产生任何磨损和卡住现象,其防水和工作寿命等各项性能指标得到保证。3回位弹簧设计在后置油门的工作寿命设计中,传感器由于是非接触式,工作寿命能满足1×107次以上全行程往返的要求,最主要就是弹簧的设计也要满足该要求。由后置油门结构及使用参数要求,弹簧扭距T=1426N·mm,变形角φ=50°=0.87rad,内半径R1=9mm,外半径R=21.5mm。设计计算如下1)弹簧材料按照YB/T5310-2010“弹簧用不锈钢冷轧钢带”标准,选用牌号1Cr17Ni7,抗拉强度选为为σb=1300MPa的不锈钢材料。2)许用应力当使用寿命大于105时,取[σ]=(0.5~0.6)σb=(0.5~0.6)×1300MPa=650~780MPa,这里,取[σ]=650MPa。3)弹簧材料的截面尺寸b,h,b=5mm为已知条件,由公式h=6k2Tb[σ槡]求截面厚度h,弹簧要求外端固定,因此k2=1,所以h=6×1×713槡5×650mm=1.14mm,查“弹簧材料的厚度和宽度尺寸系列表”,取h=1.2mm。4)弹簧工作长度l由“非接触型平面涡卷弹簧的设计计算公式表”中公式,并取k1=1,E=0×105N/mm2,l=Ebh2φ12k1T=2×105×5×1.23×0.8712×1×713mm=146mm。5)节距tt=π×(R2-R21)l=3.14×(21.52-92)146mm=8.19mm取t=8.2mm。6)圈数n0n=R-R1t=21.5-98.2圈=1.5圈。

二、传感器电路设计

传感器的电路设计主要要做好电磁兼容设计,第一是传感器对外发射的电磁干扰不能超过一定的限值;第二是传感器要具有抵抗外界电磁干扰的能力。霍尔元件可选用MELEXIS公司的MLX90316器件,它是一个可编程三轴霍尔传感器,0~360o高精度连续测量,线性模拟双信号输出。传感器技术参数如表1所示从以上主要电气技术参数可看出,霍尔式角位移传感器是直流小信号工作器件,对外发射的电磁干扰很小,其电路的设计主要放在抗外部干扰上,即保证传感器能够抵抗来自外部的干扰能正常工作和承受外部电压的冲击而不被损坏。具体电路如图4所示。电路中E1、E2为磁珠,可以吸收传导来的噪音;C1~C5为贴片电容,可以吸收和滤除噪音;D1、D2为双向TVS管(瞬态抑制二极管),当两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1×10-12s)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保霍尔元件免受瞬态高能量的冲击而损坏。TVS管的选取:TVS管额定反向关断电压Vwm应大于或等于被保护电路的最大工作电压。考虑到霍尔元件的工作电压为5V,但编程电压为7.5V,以及TVS管的离散性,TVS管可选用SMCJ11CA。为了满足传感器防水,防潮,防震,防灰尘等性能要求,电路板可用韧性好的弹性体环氧树脂封装在塑料密闭腔内,既防水,又具有吸震与缓冲效果。由于HALL元件选用的是一个可编程双信号输出霍尔元件,所以,只要传感器和后置油门总成装配好后,再按照电气性能要求写入相应程序。

三、结语

基于霍尔元件设计的一种后置油门,采用不锈钢涡卷弹簧,旋转部分和传感器相互独立,传感器无转子和旋转部分相连,克服了原后置油门存在的一些不足,具有更好的防水,防潮,防震,防灰尘性能,可靠性高,工作寿命长。为了验证该后置油门的性能,经专业从事汽车电器检测的第三方检测机构———长沙汽车电器检测中心进行检验,以及用户使用,各项性能指标满足使用要求。该后置油门可广泛应用于各种工程机械中。

查看全文

机械优化设计方法分析

摘要:机械优化设计是近几年来发展起来的一门新的学科,在二十世纪中旬的时候开始,优化技术和计算机技术的兴起,在每个设计领域中被应用,为工程设计提供了重要的科学的设计方法。以下内容就是将机械设计的过程中,遇到的很多复杂的问题设计,在众多的设计方案中选择最优的一种设计方案进行设计,从而提高设计的效率和质量。机械的优化设计是以最低的成本获取最高的利益,是所有设计者追求的目标,在数学的角度来看机械的优化设计就是,求解极大值或极小值问题。本文重点介绍了机械优化设计的理论方法,分析优化方法的最新研究进展。

关键词:机械;优化设计;方法特点

现代的机械也在不断的随着时代的发展不断的进步,促使了机械优化设计的理论不断的完善,以满足时代的需求,因为这些设计的理论都会用过实验数据以及科学的进步相互结合得出来的,因此将这些结论融入实际的生产活动中能够获得显著的成效。

1机械优化的概述

机械优化是顺应时展而不断延伸出来的一种现代化的生产而发展兴起的。它是建立在数学规划的理论和计算通过有效的实验数据和科学的评价体系来从众多的设计方案中寻找到能够尽可能的完善和适宜的设计方案,在这机械优化的这个机械方面的研究和应用的发展速度都是非常的快速,并且在快速发展的过程中取得了非常显著的效果。

2机械优化设计的基本理论

查看全文

园林优化设计论文

基于蚁群算法的抗滑桩结构造价优化设计研究基于“海绵城市”理念的园林优化设计

1引言

海绵城市理念在园林绿地建设中极具适用性,而园林优化设计又是打造海绵城市过程中不可或缺的重要内容。当前,园林的主要功用是观赏、休闲、娱乐,在人们日常生活中扮演着重要角色。基于海绵城市理念,对其进行优化设计,不仅能够提高水资源利用率,而且能够有效解决水污染问题,使城市空气及环境得到净化,经济效益与生态效益兼备。

2海绵城市理念、建设原则及规划目的

2.1海绵城市理念

海绵城市即充分发挥现代城市的弹性,使其对环境变化及自然灾害具备较好的应对能力。海绵城市极为舒适,呈现宜居性特征,具备较好的渗透性和净化功能。主要实现方法是充分发挥生态、自然排水系统功能,对雨水进行吸纳和缓释,有效缓解城市内涝问题,改善城市环境,解决水资源浪费问题。

查看全文

变电站优化设计研究

摘要:为进一步探索变电站220kV架构的优化设计方法,在研究中采用3D3S软件对某一实际工程案例进行简单的研究与分析,并重点阐述220kV变电站架构的优化设计注意要点,希望能对广大从业人员有所启发。

关键词:变电站;220kV架构;优化设计;3D3S

一直以来我国针对变电站架构设计均采用标准化设计方法,为了控制安全性,往往存在较大的安全富裕,但是这也在一定程度上造成了严重的资源浪费。基于此种情况,对变电站输电铁塔架构开展优化设计具有非常重要的意义[1]。在本文的研究当中选择采用3D3S软件对某一220kV变电站架构进行建模分析,并探索优化设计的具体方法。

1空间模型

采用3D3S作为空间建模工具,根据工程实际情况建立模型,该模型的具体架构如图1中所示。完成空间模型建立之后,还需要根据工程实际情况,将架构所承担的荷载施加到结构之上。具体来说所需要施加的荷载主要包含:地震力、风力、导线、架构本身重量以及导线所受到的风荷载等。在进行荷载施加时需要严格按照实际情况进行分析,并合理施加荷载。

2档距选择

查看全文

城镇燃气管网优化设计探索

摘要:我国经济快速发展为城镇燃气管网建设提供了有利条件。天燃气作为一种新型能源还处于发展阶段,有很多方面不够完善,这就需要相关部门加强城镇燃气管网的优化设计。

关键词:城镇;燃气管网;优化设计

1影响城镇燃气管网优化设计的主要因素

1.1管道压力调节装置。目前很多居民都用天燃气代替电能的使用,有效促进了天燃气的发展,对城镇燃气管网进行优化设计,不但能够提高天燃气的安全性,还能为居民生活提供便利性。管道压力调节装置是燃气管网的主要阀门装置,它对燃气输送过程中的压力和安全起着重要作用,所以,相关人员要加强对管理压力调节装置的重视,尽量选择具有主副调压有明显区分功能和超压自动切断的调压器,提高装置的安全性,进而提高天燃气的使用率。主副调压功能主要是当出现紧急情况时,主调压器功能关闭,不影响副调压器的正常工作,从而减少对居民正常生活的影响,确保装置正常运行。选择主副调压还具有一个优势,能够使两个调压器分开工作,这样不仅减少了资源浪费,还能确保居民使用过程中的安全性。工作人员选择超压自动切断调压器,与普通调压器相比,这种调压器具有显著的优势,燃气管道内燃气输送流量的压力应该低于调压器的最高标注压力承受范围,一旦调压器超过标准压力范围,超压调节器就会自动切断,这样不但确保了居民使用的安全性,还能减少燃气泄漏对环境的污染,从而提高我国生态环境,促进我国能源持续发展。1.2城镇燃气管网布置的理念及方法。城镇燃气管网的优化设计为管网的具体布置提供了科学的理论指导,使得相关工作顺利进行。但理论知识离不开实际操作,要想确保理论知识的合理性,必须把其运用到实际生活中,通过管网布置的实际检验才能体现出设计的优化,进而发挥出燃气管网最大效用,促进我国天燃气长期发展。工作人员在布置城镇燃气管网时,要对管网管径的实际情况进行考察,了解管径的大小,使其满足居民生活实际需求,工作人员不能对管网管径大小进行盲目判断,影响居民对天燃气的使用效率。为了确保管网设计优化的准确性,使得以后工作顺利进行,工作人员应该对管网优化设计进行严密的理论值数值计算,根据实际情况对其进行精准的计算,从而得出合理的数值作为理论指导的参考依据,进而对城镇燃气网进行布置。1.3城镇燃气管网材质量的选择和把控。现在大多数燃气管网都是走暗线,把线埋在地下,由于地下环境较为潮湿,并且土壤中的一些成分会对燃气管网的材料进行腐蚀,长此以往会破坏管材的结构,严重情况会出现天燃气泄漏,这会给居民的安全带来巨大的隐患,影响居民正常生活。因此,工作人员在选择城镇燃气管网管材时,要选择合适的材料,考虑管材的使用性能,尽量选择一些抗腐蚀性较强的材料,这就不但能够节省材料的成本,还能避免出现管材裂开时带来的麻烦,从而减少了大量的财力、人力,进而提高城镇燃气管网的经济效益。与钢材管相比,PE管具有较大的优势,不但具有抗腐蚀性,而且成本较低、使用寿命较长,因此,工作人员在选择城镇燃气管网材料时尽量选择PE管,提高燃气管网的安全性。

2城镇燃气管网的具体优化建设方法

2.1设计合理的优化燃气管网方案。燃气管网的铺设是在地底下进行,工程量较大,需要花费较大的人力和物力,一旦对其进行重修,会给工作人员带来较大的难度。所以,在铺设之前,工作人员要做好设计方案。首先,工作人员要对实际情况进行考察,了解地下管线埋设的位置和建筑的特征,从而制定出合理的燃气管网设计方案,这个方案必须充分优化高、中、低不同气压燃气管道的具体分布。2.2严格把控管网铺设的质量。城镇燃气管网建设是一个复杂的工程,涉及到很多方面内容,一旦把管线埋入地下,后期再进行修改会有较大的难度,这就需要工作人员在铺设安装之前,根据方案进行严格铺设。由于工程项目具有一定的难度,这对工作人员提出了较高要求,需要工作人员具有较强的专业技能和实际经验才能做好这项工作。在铺设过程中,工作人员要尽量减少管网的弯曲,从而节省管道铺设的成本,提高工程的经济效益。专业技术较强的工作人员在施工时,要注意到相关细节,确保每个管道的接口牢固,进而提高燃气管网的质量。2.3定期对管网材料进行检查和维修。一般钢材质的管网尽管牢固,但容易受到腐蚀,会带来一定程度上的安全隐患。因此,工作人员不但要对材料进行防腐蚀技术处理,还要定期对材料进行检查和维修。工作人员在发现材料存在轻微腐蚀时,要对其进行擦洗保养,延长材料的使用寿命,对于腐蚀情况较为严重的材料,工作人员要对其进行及时更换,确保居民使用的安全性。

查看全文

优化设计技术在民机中地位

1尺寸优化与形状优化

根据拓扑优化的结果,在支架传力路径上增加加强筋条,筋条高度为8mm;同时由于立筋的增加,为了更准确模拟铰链接头与耳片之间、耳片与加强筋条之间的传力,将耳片与接头设计为如图5所示;简化了梁与支架的连接,在原来支架与梁的连接处用固支约束模拟紧固件连接。在这次优化中,以筋条处的典型剖面为例,筋条的高度和厚度以及筋条两边的腹板的宽度和厚度都是设计变量。由于本模型中含5个十字形筋条,另有2个类似筋条,变量的数量很多,各个变量之间存在着复杂的影响关系,最终的优化结果对参数的变化十分敏感。

2结构验证与对比分析

经过拓扑优化和形状优化,我们最终得到了较为理想的设计方案。将上述支架的优化结果返回到CATIA模型中,并经过相应简化后。为了验证该优化方案的可靠性,特对此机构进行有限元分析计算,将此三维数模建立有限元模型,按极限工况计算其变形及应力分布,将其计算结果与之相比较可知:零件在两个工况下的位移和应力分布情况与壳模型计算的结果较为接近,并且满足零件的初始设计约束。同时,在实际零件设计中,对壳模型计算中的应力集中点菜用大圆角过度设计,零件的最大应力水平有显著降低。

3优化结果分析

在未引入优化设计方法之前,该零件的筋条布置往往参考相关机型同类型零件的设计或依据经验设计。为两个零件为以传统方式设计的未经优化的零件。通过拓扑优化和尺寸优化,在不改变零件材料且不牺牲自身弯曲刚度的前提下,实现了该零件的轻量化设计。在工况13个支架零件的应力和变形云图(左侧为应力云图,右侧为变形云图)。在工况1,3个零件的最大变形量基本一致并且最大应力接近,但是优化后零件相比零件A质量减轻15.5%,相比零件B质量减轻21.3%。如果考虑在支架腹板上增加液压及电缆通道的情况下,零件A和零件B需要在腹板处开孔,这两个零件的刚度还将进一步减弱。

查看全文

纯电动客车底架优化设计

汽车工业领域结构优化设计方法主要有:拓扑结构优化、尺寸结构优化以及形状结构优化等[1]。拓扑优化可以在设计阶段初期按照性能需求进行性能优化设计[2-4],从而保证后续的尺寸优化和形状优化都是在材料最优分布的前提下进行的优化设计[5-7]。对于客车整车骨架而言,由于车身骨架结构简单,拓扑空间较小且方钢搭建较为成熟,本文将主要考虑底架的拓扑。为了使拓扑优化设计达到最大化,本文将不再以底架局部空间为拓扑优化对象。因此对某款纯电动客车整个底架进行拓扑优化设计,最大程度提高原有车身骨架的整体力学性能。

1底架的第一轮拓扑优化设计

1.1底架拓扑优化空间的建立。本文分析的纯电动客车整车骨架采用HyperMesh软件进行有限元建模。其中有限元单元总数为1290403个,节点数1260881个,三角形单元有7694个,占总数比为0.6%<5%。故有限元模型合格。其整车车身骨架有限元模型如图1所示。拓扑优化是在给定的设计空间区域内找到其最优的材料分布,以达到最优力学性能和最省材料分布的结构优化设计[8]。所以拓扑优化被广泛用于汽车的正向设计以及轻量化设计[9-11]。本文基于SIMP材料差值的变密度法,以拓扑空间的单元密度为设计变量;以优化后与优化前的总体积比值不大于0.1为约束条件;以柔度最小化(即刚度值最大)为目标函数进行拓扑优化。本文所研究车型为底置电池的纯电动客车骨架,与传统燃油机客车骨架相比,纯电动客车车身结构与承受载荷基本保持不变,由于底架上的发动机换成了电池,并且电池体积分布较大,质量较重,因此底架的结构改动较大。所以本文只将底架作为拓扑优化设计空间,车身骨架仍采用较为成熟的基础车型客车骨架作为非拓扑设计空间,并将该底架作为拓扑设计空间,车身骨架作为非拓扑设计空间的整车骨架有限元模型在Optistruct软件中进行迭代计算。原底架如图2所示。为使拓扑空间达到最大化,除保留底架主要横纵梁以及一些功能性方钢以外,其余斜撑等方钢全部删除。由于前中门踏板作为单独总成进行整车组装,且考虑需站立乘客等情况应过盈设计,所以将其作为非拓扑空间。在拓扑空间区域铺设20mm厚的钢板。关于下文所用到的方向,其设置标准为:X轴为纵向,客车后侧方向为正向;Y轴为横向,客车右侧方向为正向;Z轴为竖直方向,向上方向为正向。底架铺设钢板示意图如图3所示。整个底架一共铺设73组钢板,其中XOY面铺设40组,XOZ面铺设10组,YOZ面铺设23组。为了使拓扑优化结果便于工程制造和工艺性,软件中设置了模式组约束进行对称设计。同时设置最小成员尺寸为75mm,最大成员尺寸为150mm。1.2工况设置和权重系数的确定。1.2.1拓扑优化的工况设置。客车在行驶过程中最常见的两种工况为弯曲工况和扭转工况,因此本次拓扑优化采取弯曲工况和扭转工况进行工况设置。对于弯曲工况:约束左前轮DOF23、右前轮DOF3、左后轮DOF123、右后轮DOF3。在底架中段左右纵梁上方施加均布载荷,均布载荷单侧合力大小为1000N。对于扭转工况:约束左后轮DOF123,右后轮DOF13,左前气囊和右前气囊之间建立MPC约束,MPC约束上施加力矩为2000Nm[12]。1.2.2多工况权重系数的确定。对于弯曲工况和扭转工况权重系数的确定,先给定弯曲和扭转两工况权重系数均为1,然后在Optist-ruct软件中进行一个迭代步的运算后输出OUT文件,查看OUT文件中两工况compliance值分别为2.988393E+02和1.150530E+03。由于两工况com-pliance值相差约4倍,因此重新给定弯曲和扭转两工况权重系数分别为4和1,重复上述步骤,得到两工况compliance值相近,分别为1.195357E+03和1.150529E+03。此时给定的权重系数即为合理的权重系数值。1.3拓扑优化结果与传力路径分析。通过Optistruct软件计算,经过73步迭代运算,得到拓扑优化计算结果。本次拓扑主要删除斜撑而保留横纵梁。通过局部放大车架的拓扑结果图,XOY面后桥左右上方拓扑优化结果与YOZ面与中部地板相连的后桥左右处拓扑优化结果如图4所示。由于后桥左右上方中间2根横梁处存在座椅安装点,故在底架的第一轮拓扑优化中只删除了附近的斜撑,保留了横梁。而从图4(a)可知,后桥左右上方中间2根横梁的存在明显打断了拓扑的传力路径。由图4(b)可知中间2根横梁虽有一定的加强作用,但是其传力路径结构复杂且衍生出很多细小路径,不利于工艺制造。故需要对这些横纵梁方钢进一步删除,扩大拓扑优化空间进行第二轮拓扑优化。使得传力路径更加清晰合理。即通过第一轮拓扑优化结果分析找出由于横纵梁的存在而导致的传力路径不合理的局部空间,对其拓扑空间进一步释放后展开第二轮拓扑优化。

2底架的第二轮拓扑优化设计

2.1底架局部改进后的拓扑优化空间。通过对第一轮拓扑优化结果与传力路径的分析可知,由于过多保留横纵梁方钢导致底架多处部位出现传力路径被打断以及衍生出过多细小路径等现象。故在不改变约束条件和目标函数的前提下,通过扩大第一轮底架拓扑优化空间,而车身骨架仍采用基础车型骨架作为非拓扑优化空间,最终将底架拓扑设计空间改动后的整车骨架有限元模型在Optistruct软件中进行迭代运算。第二轮拓扑XOY面后桥左右上方铺设钢板与YOZ面与中部地板相连的后桥左右铺设钢板如图5所示。即删除中间横梁,使得拓扑空间进一步释放。整个底架一共铺设69组钢板,其中XOY面铺设38组,XOZ面铺设10组,YOZ面铺设21组。第二轮拓扑底架铺设钢板示意图如图6所示。(a)XOY面后桥左右上方(b)XOZ面与中部地板相连的后桥左右处图5第二轮拓扑铺设钢板示意图图6第二轮拓扑底架铺设钢板示意图2.2拓扑优化结果与方钢搭建。2.2.1局部改进处的拓扑传力路径分析。通过Optistruct软件计算,经过72步迭代运算,得到拓扑优化计算结果。XOY面后桥左右上方第二轮拓扑优化结果与YOZ面与中部地板相连的后桥左右处第二轮拓扑结果如图7所示。(a)XOY面后桥左右上方(b)YOZ面与中部地板相连的后桥左右处图7第二轮拓扑优化结果示意图对比图4(a)和图7(a)可知第二轮拓扑优化传力路径无被打断现象;对比图4(b)和图7(b)可知第二轮拓扑优化传力路径更加清晰连贯且未出现细小路径。可进行下一步的方钢搭建。2.2.2底架第二轮拓扑优化结果与方钢搭建。通过HyperMesh软件Post界面中OSSmoth处理以及可制造化处理原则进行方钢搭建。XOY面拓扑优化结果如图8所示,XOY面方钢搭建如图9所示。图8XOY面拓扑优化结果图9XOY面方钢搭建从拓扑优化结果示意图可以看出,整体拓扑传力路径比较清晰且较为合理。故本次拓扑后的方钢搭建严格按照拓扑优化结果进行。考虑到生产工艺技术等工程实际情况,只对局部传力路径不明显处进行略微删减和改进。2.3拓扑优化前后的性能对比。客车的刚度主要包括弯曲刚度和扭转刚度。刚度工况的设置与拓扑优化的静力学分析设置相同。拓扑优化前后相关值对比见表1。由表1可知,经过两轮拓扑优化后与原车型相比,底架质量减轻了0.048t,弯曲刚度增加了4492.2N/mm,增幅达到了50.1%,扭转刚度增加了548.3kNm/rad,增幅达到了35.1%。

3结束语

查看全文

土质边坡锚杆加固优化设计研究

摘要:以某高陡挖方土质边坡工程为背景,基于FLAC3D软件,分析了锚杆长度、间距、倾角等参数对边坡稳定性的影响,并探讨了锚杆的优化设计方法,给出了该边坡的优化设计方案,从而满足边坡加固经济性与安全性的要求。

关键词:锚杆,边坡,稳定性,安全系数

锚杆技术是土质高边坡治理中常见的加固手段[1,2]。锚杆设计能够随坡就势、与坡面紧密贴合、布置灵活、无需额外的占地面积、施工方便快捷、经济安全,而且锚杆支护的边坡可以在坡面上植草绿化,美化环境,保护生态[3]。因此,锚杆支护在边坡加固处理中应用越来越广泛。锚杆设计中,涉及到锚杆长度、间距、倾角等诸多参数[4,5]。设计合理的参数,可以在确保安全的前提下,进一步提高锚杆支护的经济性。本文以某高陡挖方土质边坡为工程背景,基于FLAC3D分析了锚杆长度、间距、倾角等参数对边坡稳定性的影响,探讨了锚杆优化设计的方法,并给出了该边坡的优化设计方案。

1工程背景

某小区东侧为高陡土质挖方边坡。该边坡距离最近的住宅楼约14m,高约15m,边坡坡度约为1∶0.8。该边坡地层情况如表1所示。为保证住宅楼的安全,拟采用锚杆系统对该边坡进行加固治理。

2加固前边坡稳定性分析

查看全文

轿车衣帽架框架优化设计

摘要:阐述常用衣帽架框架设计存在的问题,针对存在的问题点,在优化衣帽架框架设计时,增加衣帽架两侧竖梁设计,使衣帽架框架和后地板框架形成整体封闭结构。从而不仅有效满足尾碰过程能量的传递和分散,而且增加后轮包的局部动刚度和整个车身的扭转刚度。

关键词:轿车;衣帽架;框架结构;优化设计

汽车的衣帽架结构主要由后座椅靠背横梁、后风窗流水槽横梁、衣帽架覆盖件等组成,左右两侧与侧围总成连接。从功能上说,前侧支撑后座椅靠背,上侧安装搁物板,并能承载一定的搁物重量,后侧设计有后风挡安装面和流水槽,也需要承载一定载荷[1]。从性能上说,衣帽架结构的设计,对车身的尾碰性能、行李箱入侵、车身扭转刚度都有较大的决定因素。

1常用衣帽架框架结构

1.1常用设计方案目前常用衣帽架框架结构主要是在前部设计有后座椅靠背横梁,后部有后风窗流水槽横梁,该两横梁在与左右侧围总成连接。图1为现有衣帽架结构示意图。图中,衣帽架总成1与左右侧围总成2、3连接成整体结构,4为后地板框架总成(简化为虚线所示)。衣帽架总成与上车体侧围总成2、3连接,并与下车体后地板框架总成4连接。1—衣帽架总成;2—左侧围总成;3—右侧围总成;4—后地板框架总成图2为现有衣帽架结构A-A视图。衣帽架总成1由后座椅靠背横梁5、后风窗流水槽横梁6、衣帽架7组成。5—后座椅靠背横梁;6—后风窗流水槽横梁;7—衣帽架图2A-A视图Fig.2SectionA-A由图1、图2所示,现有衣帽架结构设计时,衣帽架总成1中的后座椅靠背横梁5、后风窗流水槽横梁6只与左右侧围总成2、3连接,侧围总成上没有设计竖粱,用来连接衣帽架总成1和后地板框架总成4。1.2常用方案的缺陷由于结构原因,导致衣帽架总成1中的框架和后地板总成框架4没有形成封闭的整体框架结构。在尾碰撞时,碰撞力通过后地板框架中纵梁直接传到前部,增加伤害后排乘客人员伤害。在车辆行驶时,突然的刹车,会导致行李箱的行李也会直接碰撞后排成员,造成人员人身伤害。在市场车型中,也会经常反馈后轮包动刚度不足,导致车辆使用一段时间后,出现后轮包开裂现象。另外,不封闭的框架结构大大影响车身的扭转刚度。

2优化衣帽架框架结构

查看全文