小波转换范文10篇
时间:2024-03-29 18:03:33
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇小波转换范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
小波转换影像压缩模式之研究
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波转换影像压缩模式之研究
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
小波转换影像压缩模式分析论文
壹、
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。
小波转换影像压缩模式论文
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波转换影像压缩模式研究论文
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波转换影像压缩管理论文
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
电影论文:小波转换影像压缩模式之研究详细内容
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
影像压缩模式研究论文
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
影像压缩模式管理论文
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
影像压缩模式管理论文
摘要
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。