无轴承电机范文10篇

时间:2024-03-28 01:06:09

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇无轴承电机范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

无轴承电机

无轴承电机研究论文

无轴承电机起源及发展

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器,但长期高速运行,轴承维护保养仍是难题。

二次世界大战后,直流磁轴承技术的发展,使得电机和传动系统无接触运行成为可能,但这种传动系统造价很高,因为铁磁性物体不可能在一个恒定磁场中稳定悬浮。主动磁轴承的发明,解决了这个难题,但用主动磁轴承支承刚性转子要在5个自由度上施加控制力,磁轴承体积大、结构复杂和造价高。

20世纪后半期,为了满足核能开发和利用,需要用超高速离心分离方法生产浓缩铀,磁轴承能满足高速电机支撑要求,于是在欧洲开始了研究各种磁轴承计划。1975年,赫尔曼申请了无轴承电机专利,专利中提出了电机绕组极对数和磁轴承绕组极对数的关系为±1。用赫尔曼提出的方案,在那个年代是不可能制造出无轴承电机的。

随着磁性材料磁性能进一步提高,为永磁同步电机奠定了有力竞争地位。同时,随着双极晶体管的应用,以及和柏林格尔提出的无损开关电路结合,能够制造出满足无轴承电机要求的新一代高性能功率放大器。大约在1985年,具有快速和负载能力的功率开关器件和数字信号处理器的出现,使得已经提出20多年的交流电机矢量控制技术才得以实际应用,这样解决了无轴承电机数字控制的难题。瑞士苏黎世联邦工学院的比克尔在这些科技进步的基础上,于20世纪80年代后期才首次制造出无轴承电机。

几乎与比克尔同时,1990年日本A.Chiba首次实现磁阻电机的无轴承技术。

查看全文

无轴承电机研究论文

无轴承电机起源及发展

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器,但长期高速运行,轴承维护保养仍是难题。

二次世界大战后,直流磁轴承技术的发展,使得电机和传动系统无接触运行成为可能,但这种传动系统造价很高,因为铁磁性物体不可能在一个恒定磁场中稳定悬浮。主动磁轴承的发明,解决了这个难题,但用主动磁轴承支承刚性转子要在5个自由度上施加控制力,磁轴承体积大、结构复杂和造价高。

20世纪后半期,为了满足核能开发和利用,需要用超高速离心分离方法生产浓缩铀,磁轴承能满足高速电机支撑要求,于是在欧洲开始了研究各种磁轴承计划。1975年,赫尔曼申请了无轴承电机专利,专利中提出了电机绕组极对数和磁轴承绕组极对数的关系为±1。用赫尔曼提出的方案,在那个年代是不可能制造出无轴承电机的。

随着磁性材料磁性能进一步提高,为永磁同步电机奠定了有力竞争地位。同时,随着双极晶体管的应用,以及和柏林格尔提出的无损开关电路结合,能够制造出满足无轴承电机要求的新一代高性能功率放大器。大约在1985年,具有快速和负载能力的功率开关器件和数字信号处理器的出现,使得已经提出20多年的交流电机矢量控制技术才得以实际应用,这样解决了无轴承电机数字控制的难题。瑞士苏黎世联邦工学院的比克尔在这些科技进步的基础上,于20世纪80年代后期才首次制造出无轴承电机。

几乎与比克尔同时,1990年日本A.Chiba首次实现磁阻电机的无轴承技术。

查看全文

无轴承电机发展分析论文

20世纪后半期,为了满足核能开发和利用,需要用超高速离心分离方法生产浓缩铀,磁轴承能满足高速电机支撑要求,于是在欧洲开始了研究各种磁轴承计划。1975年,赫尔曼申请了无轴承电机专利,专利中提出了电机绕组极对数和磁轴承绕组极对数的关系为±1。用赫尔曼提出的方案,在那个年代是不可能制造出无轴承电机的。

随着磁性材料磁性能进一步提高,为永磁同步电机奠定了有力竞争地位。同时,随着双极晶体管的应用,以及和柏林格尔提出的无损开关电路结合,能够制造出满足无轴承电机要求的新一代高性能功率放大器。大约在1985年,具有快速和负载能力的功率开关器件和数字信号处理器的出现,使得已经提出20多年的交流电机矢量控制技术才得以实际应用,这样解决了无轴承电机数字控制的难题。瑞士苏黎世联邦工学院的比克尔在这些科技进步的基础上,于20世纪80年代后期才首次制造出无轴承电机。

几乎与比克尔同时,1990年日本A.Chiba首次实现磁阻电机的无轴承技术。

1993年,苏黎世联邦工学院的R.Schoeb首次实现交流电机的无轴承技术。无轴承电机取得实际应用,关键性突破是1998年苏黎世联邦工学院的巴莱塔研制出无轴承永磁同步薄片电机,电机结构简单,大大降低了控制系统费用,在很多领域具有很大应用价值。

2000年,苏黎世联邦工学院的S.Sliber研制出无轴承单相电机,再一次在无轴承电机研究历史上前进了一步,降低了控制系统的费用,使得无轴承电机实际应用不仅仅是可想的,而且是经济的。无轴承电机像机械轴承支承的电机一样简单,电气控制系统并不复杂,在很多领域采用无轴承电机也很经济。我们认为在不久的将来,这种技术在中国将取得广泛的应用。

无轴承电机特点及应用

查看全文

无轴承电机研究管理论文

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器,但长期高速运行,轴承维护保养仍是难题。

二次世界大战后,直流磁轴承技术的发展,使得电机和传动系统无接触运行成为可能,但这种传动系统造价很高,因为铁磁性物体不可能在一个恒定磁场中稳定悬浮。主动磁轴承的发明,解决了这个难题,但用主动磁轴承支承刚性转子要在5个自由度上施加控制力,磁轴承体积大、结构复杂和造价高。

20世纪后半期,为了满足核能开发和利用,需要用超高速离心分离方法生产浓缩铀,磁轴承能满足高速电机支撑要求,于是在欧洲开始了研究各种磁轴承计划。1975年,赫尔曼申请了无轴承电机专利,专利中提出了电机绕组极对数和磁轴承绕组极对数的关系为±1。用赫尔曼提出的方案,在那个年代是不可能制造出无轴承电机的。

随着磁性材料磁性能进一步提高,为永磁同步电机奠定了有力竞争地位。同时,随着双极晶体管的应用,以及和柏林格尔提出的无损开关电路结合,能够制造出满足无轴承电机要求的新一代高性能功率放大器。大约在1985年,具有快速和负载能力的功率开关器件和数字信号处理器的出现,使得已经提出20多年的交流电机矢量控制技术才得以实际应用,这样解决了无轴承电机数字控制的难题。瑞士苏黎世联邦工学院的比克尔在这些科技进步的基础上,于20世纪80年代后期才首次制造出无轴承电机。

几乎与比克尔同时,1990年日本A.Chiba首次实现磁阻电机的无轴承技术。

1993年,苏黎世联邦工学院的R.Schoeb首次实现交流电机的无轴承技术。

查看全文

当前中国航空轴承故障与改善

本文作者:杨静工作单位:广州民航职业技术学院

0引言

经科研人员试验调查,某型号的飞机上使用的电机轴承是用样品轴承的尺寸结构和材料标准严格制造出来的。其中的3E180406JT3R2电机轴承是为该型号的飞机原启动发电机配套的电机轴承,自20世纪六七十年入生产以来,其质量和口碑一直很好,满足了当时飞机对于飞行的要求。近来由于科技的不断进步,对于飞机的改造也作了进一步的改进。启动的发电机也得到了必要的改进。电机轴承的转速、额定功率、工作时的温度等指标以及其工作的环境均得到了很大的变化,可是就是这样原配套的轴承也暴露出了一系列的问题。

1问题的提出及原因分析

应用在新型发电机上的电机轴承3E180406JT3R2在这几年时间里,陆续出现了大大小小的故障,有的故障涉及的面大,范围广,危及飞行人员的安全。在故障发生以后,科研人员先后6次对其电机轴承进行了科学的、仔细的了解和分析。发现电机均在前端的支撑部位有明显的损坏和断裂。其轴承失去了同类产品的效果。即轴承支撑架断裂、钉子拉断了、拉脱位了、密封圈也有散落的痕迹,套圈沟道里有严重烧伤的痕迹。对于轴承的损坏,科研人员作出了如下的情景描述:机车的半悬挂轮对牵引电机采用了轴悬式的悬挂结构方法,牵引电机轴承的一侧通过一个叫抱轴承的刚性支撑在抱轴上,另外一侧就通过弹性元件和吊杆原件悬挂在转向架构的架子上。抱轴承是用来悬挂的装置的重要组成部分,其结构是剖分式的滑动轴承,这种悬挂的方式简单,检修也容易,拆装更方便简明。但是轴承间的间隙会在车轴和电枢轴2个轴传动中齿轮的啮合力的作用下产生变形,导致力分配不平衡,容易引起电机倾斜,造成传动齿轮工作的条件恶化,使得支架出现断裂的现象。使牵引电机抱轴承的铆钉拉断拉托。故障发生频率也较高。为了提高电机轴承检修质量,这一问题亟需解决。根据这些出现的现象,轴承的加工制造商们也开始反思原因。他们没有发现与制造过程中有关的因素。电机轴承的材料都是按照国家质量监督局的规定来采购和运用的,制造的精密度也都全部合格。那么损坏的主要原因是什么呢?是轴承在工作时所接触到的高温坏境。但高温坏境的具体问题还无法得到证实。但是生产厂家已经在保持其强度硬度上提出了合理的规划,并予以改进。为了保证飞行的安全,使电机轴承能够满足新时期新启动的航空配备要求,主管部门召开了新闻会,联合多家相关单位参加了“新时期新启动电机轴承分析会”。会议上与会领导作了发言报告:某型号飞机从原来的配备1台启动发电机到改进后配备2台新型启动发电机,但是在通风道上没有变化,现在符合“加大了风量不变”这一基本条件,这可能就是导致其产生高温的重要原因。根据这些情况,科研人员对该型号的电机通风情况作了进一步的检查,并当场拆开了6台电机轴承带到中心去研究。经过研究所、电机轴承开发商、中心的共同努力,发现这6台中有一半的橡胶密封圈和轴承接触处开始老化,其中有2片已经脱落,完全失去密封性。介于这一情况,各方初步认定了由于新型发动发电机风量较少,从而导致了电机轴承产生高温,导致密封圈老化损坏,失去了润滑脂,导致轴承的损坏。因此,密封圈的老化问题也必须加以解决。

2改进措施

查看全文

电动机电机启动研究论文

摘要:电动机在我区的使用很广泛,它遍及各行各业的各个角落,在生产、生活过程中发挥着极其重要的作用。但由于大部分电机使用年限较长,电机烧毁的事故常有发生,而且呈上升趋势,严重影响着生产、生活的安全、可靠、长周期运行。现针对电机烧毁原因及相应对策做一分析和研究。

关键词:电动机电机启动故障

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

查看全文

电动机电机启动故障分析论文

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种润滑油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

查看全文

电动机故障防控措施论文

摘要:交流电动机在国民经济的各行各业起着重要作用。而许多电动机使用年限长久并缺乏必要的保养维护.有的在恶劣条件下运行,所以时有电动机烧坏的事情发生。70%以上电动机烧毁的原因就是如此。就电动机烧毁的原因和解决方法,收及如何防止电动机发生故障提出一些解决方法。

关键词:电动机故障;解决办法;缺相;电压;轴承润滑

一、三相电动机常见故障原因及解决办法

1通电后电动机不能转动,但无异响,也无异味和冒烟。

a电源没通,至少两相未通。控制设备接线错误,检查电源回路开关,熔丝、接线盒处是否有断点。

b熔丝熔断最少有两相熔断。检查熔丝型号、熔断原因,更换熔丝,最好更换相应容量的断路器-防止电动机单相运行。

查看全文

磁悬浮电机替代传统技术经济分析

摘要:磁悬浮电机采用无接触式磁轴承,避免了转子与定子间的摩擦造成的功率损失,在使用成本方面,磁悬浮电机降低了维护过程的费用,同时避免了转子磨损情况,大幅度的提升了电机的使用寿命,与此同时,较小的摩擦功损失提升了电机的能量转化效率,提升了电机的使用经济性,通过将磁悬浮电机目前技术现状、使用成本与使用限制等因素的分析,得出结论,在使用效果与经济性方面,部分领域磁悬浮电机相比传统电机具有一定的优势。

关键词:磁悬浮电机;技术;经济性;可行性分析

1绪论

磁悬浮电机是磁悬浮轴承电机的简称,磁悬浮电机与传统电机的最大差别在于,磁悬浮电机采用磁悬浮轴承,代替传统电机中的滚珠轴承或浮动轴承,在使用过程中,磁悬浮电机的转子不与定子发生相对滑动,因此可以降低因滑动摩擦造成的功率损失,同时在维护时也无需额外对运动面进行润滑维护,但是磁悬浮电机对温度要求较高,过高的温度会导致磁悬浮轴承失稳,影响转子正常运行,同时,磁悬浮轴承需额外消耗电能,以维持其悬浮能力,磁悬浮电机是否能够代替传统电机,有必要从技术与经济方面开展可行性分析。

2磁悬浮电机应用优势分析

磁悬浮电机作为一种新型的电动机形式,一经推出即得到了良好的市场反馈,以下针对磁悬浮电机的应用优势开展分析。

查看全文

电动机电机启动常见故障研讨论文

摘要:电动机在我区的使用很广泛,它遍及各行各业的各个角落,在生产、生活过程中发挥着极其重要的作用。但由于大部分电机使用年限较长,电机烧毁的事故常有发生,而且呈上升趋势,严重影响着生产、生活的安全、可靠、长周期运行。现针对电机烧毁原因及相应对策做一分析和研究。

关键词:电动机电机启动故障

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

查看全文