微积分范文10篇
时间:2024-03-24 21:11:34
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇微积分范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
微积分案例教学策略探讨
摘要:高等数学是高等职业教育必修的基础课,其理论基础和思想方法不仅为专业课学习提供基础,还是技能发展的支撑工具。高等数学在高素质技能型人才的培养方面占据非常重要的地位。微积分教学作为高等数学教学中的重要模块,其教学成效重要性不言而喻。本文对微积分的教学进行研究,探讨微积分的案例教学如何实现。
关键词:教学成效;微分学;积分学;案例教学
高职院校以培养高素质技术型人才为主要方向的高等教育目的,其在课程设置需要依照高等职业院校学生的特点和专业需要。高等数学的教学展开情况直接影响了技术型人才的技能素养和终身发展的需求。
一、发展简史
微积分的发展体现着人类认识是感性认识到理性认识的过程。早期萌芽时期始于公元前七世纪上半页,表现为对图形的长度,面积和体积的研究,比如穷竭法,割圆术等都体现了微积分思维的雏形。发展成型于十七世纪,此时科学的理论研究着力于速率、极值、切线等问题,特别是描述运动与变化的无限小算法等,后来,牛顿和莱布尼茨各自独立地提出微积分系统的理论,使得微积分成为一门数学学科。自此以后,连续性、导数、无穷小以及函数收敛等得到一系列数学家的继续深化研究和改善,微积分建立在牢固的理论基础上。初等数学无法解决的问题随着微积分理论迎刃而解,显示出微积分学的非凡魅力。
二、教学案例的设计
微积分与数学建模思想融合探讨
摘要:微积分对于大多数的独立院校财经类学生而言,是一门比较抽象的课程,没有直观性的理解,学习起来具有一定的难度,而建模是将知识加以利用从而解决实际问题,因此建模对学生的微积分学习具有一定的促进作用,可以提升学生的学习兴趣,并且加深对知识的理解及应用,论文就两者之间的融合进行探讨。
关键词:微积分;数学建模
当今部分独立院校致力于培养学生为应用型人才,使学生通过本科阶段的学习培养,具有一定的综合能力与知识素养,能够在管理、生产服务建设等方面具有持续发展能力的应用型人才。对于独立院校经管类学生来说,微积分是一门重要的基础类课程,与后续的经济学、概率统计、专业课程的学习是紧密相关的。因此需要学好微积分来为其他学科的学习打下扎实的基础。微积分具有较强理论性,逻辑严谨,内容抽象等特征,对于独立经管院校的学生来说,学习起来会有些吃力,晦涩难懂,往往存在生搬硬套,只会套用公式做题,知其然而不知其所以然。对于独立院校,需要教师在教学过程中,加强学生对知识点的深入理解,尽量做到学以致用,从而有利于学生的后续发展,为实现将学生培养为应用型人才而打好坚实的基础。数学建模是通过对实际问题的观察分析、在一定的设定条件下,对问题进行抽象简化,通过设定变量与参数,利用数学符号语言表达变量间的关系,然后需要运用数学或者统计等相关软件对数学模型进行近似求解,最后通过求解的结果来解释、验证或者预测某些现象与问题。下面对数学建模思想在微积分教学中的作用进行探讨。
一、数学建模思想在微积分教学中的作用
数学建模能够较好的培养学生对知识的应用理解能力,同时提升学生的创造能力。因此,将数学建模思想融入微积分课程课程的教学中,是一件非常有意义的事,下面来具体进行介绍:(一)增强学生的学习兴趣独立院校经管专业的学生,一般数学基础相对薄弱,在授课过程中如果全程贯穿抽象的理论与计算,学生更会觉得学习枯燥乏味,从而对微积分的学习提不起兴趣。数学一般具有衔接性非常强的特点,而微积分的学习通常需要两个学期,学生如果中间有几节课落下,就会对后续的学习产生较大的影响,甚至影响整门课程学习效果。所以,在教学过程中,融入一些生活中的实际例子,然后利用微积分方法进行恰当的解决,会使学生觉得微积分没有那么晦涩难懂,抽象乏味,进而提高学习的兴趣。(二)加深对知识的理解与提高对知识的应用能力在授课过程中,通过融入适当的应用模型,可以帮助学生对知识点的深入理解。比如,在学习两个重要极限的知识之后,利用极限来计算复利,然后让学生在课下查资料,分成小组讨论,对房贷中的等额本息与等额本金两种贷款方式的进行理解计算,课上教师再加以进一步的讲解,这样可以加深学生对极限的理解与应用。在学习微分时,可以让学生对经济学中的一些问题进行近似计算,在这个过程中,既使得学生理解了微分的意义,又促进了学生对为微分的应用能力的提升。
二、建模思想融入微积分教学的途径
论微积分经济分析论文
摘要:微积分作为数学知识的基础,是学习经济学的必备知识,着重讨论了微积分在经济学中最基本的一些应用,计算边际成本、边际收入、边际利润并解释其经济意义,寻求最小生产成本或制定获得最大利润的一系列策略。
关键词:微积分;边际分析;弹性;成本;收入;利润;最大值;最小值
1导数在经济分析中的应用
1.1边际分析在经济分析中的的应用
1.1.1边际需求与边际供给
设需求函数Q=f(p)在点p处可导(其中Q为需求量,P为商品价格),则其边际函数Q’=f’(p)称为边际需求函数,简称边际需求。类似地,若供给函数Q=Q(P)可导(其中Q为供给量,P为商品价格),则其边际函数Q=Q(p)称为边际供给函数,简称边际供给。
牛顿与莱布尼兹创立微积分研究论文
摘要:文章主要探讨了牛顿和莱布尼兹所处的时代背景以及他们的哲学思想对其创立广泛地应用于自然科学的各个领域的基本数学工具———微积分的影响。
关键词:牛顿;莱布尼兹;微积分;哲学思想
今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。恩格斯说过:“在一切理论成就中,未有象十七世纪下半叶微积分的发明那样被看作人类精神的最高胜利了,如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是在这里。”[1](p.244)本文试从牛顿、莱布尼兹创立“被看作人类精神的最高胜利”的微积分的时代背景及哲学思想对其展开剖析。
一、牛顿所处的时代背景及其哲学思想
“牛顿(IsaacNewton,1642-1727)1642年生于英格兰。⋯⋯,1661年,入英国剑桥大学,1665年,伦敦流行鼠疫,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分)、万有引力和光的分析。”[2](p.155)
1665年5月20日,牛顿的手稿中开始有“流数术”的记载。《流数的介绍》和《用运动解决问题》等论文中介绍了流数(微分)和积分,以及解流数方程的方法与积分表。1669年,牛顿在他的朋友中散发了题为《运用无穷多项方程的分析学》的小册子,在这里,牛顿不仅给出了求一个变量对于另一个变量的瞬时变化率的普遍方法,而且证明了面积可以由求变化率的逆过程得到。因为面积也是用无穷小面积的和来表示从而获得的。所以牛顿证明了这样的和能由求变化率的逆过程得到(更精确地说,和的极限能够由反微分得到),这个事实就是我们现在所讲的微积分基本定理。这里“,牛顿使用的是无穷小方法,把变量的无限小增量叫做“瞬”,瞬是无穷小量,是不可分量,或是微元,牛顿通过舍弃“瞬”求得变化率。”[3](p.199)1671年牛顿将他关于微积分研究的成果整理成《流数法和无穷级数》(1736),在这里,他认为变量是连续运动产生的,他把变量叫做流,变量的变化率叫做流数。牛顿更清楚地陈述了微积分的基本问题:已知两个流之间的关系,求它们流数之间的关系,以及它的逆问题。《流数法和无穷级数》是一部较完整的微积分著作。书的后半部分通过20个问题广泛地介绍了流数法各无穷级数的应用。1676年,牛顿写出了《求曲边形的面积》(1704),在这里,牛顿的微积分思想发生了重大变化,他放弃了微元或无穷小量,而采用了最初比和最后比的方法。
微积分在大学物理课程力学部分应用
【摘要】大学物理是本科院校理工科学生的主要必修课程。研究微积分在力学中的主要应用,帮助学生重视微积分理论与技能学习,提升物理学习效果,同时对数理教学活动提供一点参考。
【关键词】微积分;导数;微分;积分
一、导数在力学中的应用
(一)根据导数定义
假设一元函数在某点一个邻域内有定义,当给该点以增量(仍在同邻域)时函数产生相应增量。若函数增量与自变量增量比值,在自变量增量趋于零时的极限存在,则称此极限值为函数在点的导数.又称函数在该点可导。
(二)导数在力学中的应用
微积分在数学教育中的意义
一、微积分在数学教育中的必要性
随着社会的不断发展,微积分及其相关知识应用越来越广泛。新课改也要求将微积分加入到教学中来,其必要性是因为它对很多学科、专业都有重要影响。同时,随着微积分对于现代生活的影响越来越广泛,微积分成为教学内容也可以说是社会对教育的要求。是社会发展的必然趋势。科学技术发展的越快,数学的应用也越来越多,从而对数学的要求也会越来越高。这就会对数学教学教学产生影响,教学的内容会相应的随着社会需求而改变。为了满足科技对人才的需要,教学内容就会增加新知识,以此适应时代的发展。例如,网络知识的增加、概率统计学以及微积分知识的加入,都是为了社会的发展而加入到教学中的。如今我们所面对的世界已经进入了信息时代,为了适应新时代的发展,微积分自然而然的就进入了高中教学中。高中作为我国基础教育的最后阶段,有着十分重要的作用。微积分之所以出现在高中也是为了推动可持续发展。无论高中毕业后是否继续学习,微积分都会在以后的生活中起到积极作用。对于大学生来说,高中的微积分教育是继续深造的基础;对于将要开始工作的学生来说微积分对新知识的掌握也有很大帮助。总之,在现代社会微积分是一项重要的基础知识。微积分的学习对学生思维的发展有着积极的影响。微积分中的以“直”代“曲”、以“局部”研究“整体”,从“有限”认识“无限”等思想,都是初等数学中从未涉及的。这些思想和方法有利于学生形成辩证逻辑思维,对学生的跳跃性思维有重要影响。体现了数学教育对人的思维的影响。这种从直到曲,从局部到整体,从有限到无限的思维认识,会成为学生在学习生涯中得到的宝贵知识。
二、微积分在数学教育中的价值
通过微积分的课程,可以加强高中数学教育的严谨性,从而达到优化教学的作用。锻炼学生解决实际问题的能力,提升他们应对问题时的反应能力,也会使学生不自觉的用数学思维思考问题。微积分的教育价值体现在,兼顾不同层次的学生要,对不同的层次研究不同的教法,准确把握不同阶段的学生对微积分知识的掌握情况做好定位。在数学教育中,严谨、精确是其最大的特点。而利用微积分相关的知识可以增加数学的严谨性。同时,它还可以使高中阶段的一些繁琐的数学问题简单化,能够轻易的解决难题,解题步骤也会让人眼前一亮。可见微积分知识扩展了数学教学,加强学生对解题的多样性思维的锻炼。微积分对于培养学生在解决实际问题和锻炼思维能力方面有重要作用。微积分会通过大量的实际经验和具体的实际案例所得出一些概念。例如通过研究增长率、膨胀率、效率、密度、速度等反映导数应用的实例,用来引导学生感受由平均变化率到瞬时变化率的过程,了解瞬时变化率就是导数,感受微积分在研究函数和解决实际问题中的作用,体会微积分的思想及其内涵。微积分还有助于帮助学生解决一些实际生活中存在的问题,对于相关学科的理解学习也有帮助,从而开发学生在解决问题方面的能力,为学生解决问题积累经验教训。同时,锻炼思维能力,也是微积分进入数学教育的目的之一。微积分中包含有重要的数学思想和解题的思维方法,这些思想和方法会促进学生辩证逻辑思维的形成。掌握了微积分的知识,更有利于学生从微积分的高度重新的角度认识初等数学中的知识,这会加深学生的理解,更利于掌握初等数学,更明确清晰地了解其知识内容。同时,有利于加深对数学知识的体验,无论是初等数学知识还是高等数学知识他们都是有统一性存在的。通过学习这种更加灵活的思维模式,提高学生的思维能力。
三、微积分的作用以及对数学教育的影响
微积分的出现可以说推动了数学的发展速度。微积分让数学更生动,例如,微积分对于描述运动的事物有几大帮助,可以描述变化的过程。甚至可以说,数学界因微积分的出现而发生了改变。微积分的出现不单单是推动数学的发展,同时开创了许多新的数学分支,例如:微分方程、无穷级数、离散数学等等。这些新的分支不断地推动着数学的发展,特别是数学教育中,微积分的不断创新更利于学生在思维方面的不断创新。使得数学的学习增添了更多的趣味性。微积分还对其他一些相关学科有促进作用。由于数学本就是工具学科,对自然学科等发展都有重要影响。对物理学的影响更是不言而喻,很多的物理学问题都要靠微积分作答。伟大的牛顿就是用微积分学及微分方程从万有引力定律导出了开普勒行星运动三大定律。除此之外还有很多就不一一列举了。不可否认微积分的出现对社会和科学都有巨大贡献。而微积分在教育中的作用同样不可忽视,微积分的出现是对数学教育的推动。它让数学教育的内容更丰富,在教学中更具实用性。它使得数学与现实生活联系的更紧密,更灵活,着更有助于加深高中生对微积分的印象和兴趣。让微积分不知不觉渗透到他们的生活与学习中。微积分对于研究变化规律十分有帮助,因此只要涉及到与变化有关的学科都可以用到微积分。在人类发展的进程中微积分做出了举足轻重的贡献。如今,微积分更是被应用到各个行业,无论是社会还是经济的变化由于微积分有着不可分割的联系。此外,微积分还参与着人们的日常生活,以及各种科技工程等。微积分在高中教学中出现,对于为国家输送人才有很大帮助。这就体现了微积分在高中数学中的存在价值,虽然暂时来说微积分教育并不成熟,仍然存在很多不足,但综上所述,微积分教育在高中数学教育中出现时有必要的。
新课标下高中微积分教学策略
摘要:2017版新课标对高中微积分的内容和要求做出了较大调整,使得在微积分教学时遇到了一定困难。本文以新课标为出发点,归纳新课标中关于微积分的内容和要求的主要变化,揭示现阶段高中生在学习微积分中存在的问题,并针对这些问题提出具体的教学建议和策略,为新课标背景下高中微积分的教学提供一定思考和改革策略。
关键词:新课程标准;微积分;高中数学;教学
随着课程标准的不断改革,微积分在高中阶段越来越受到重视。教育部颁布《普通高中数学课程标准(2017年版)》(以下简称新课标),对微积分的教学提出了更高的要求。事实上,微积分中所蕴含的美育价值、思维价值和应用价值,对高中生辩证思维的发展、解题思路的拓展和后续学习都有着十分重要的影响。因此,在新课标下,高中微积分教学成为数学教师亟需思考和研究的新课题。微积分在高中数学中经历了多次改革,广大数学教育工作者针对历次改革的新内容、新要求,对高中微积分教学提出了许多建议。如孟季和[1]在《中学微积分教材教法》中,对适应1978年教学大纲改革的微积分教学的教法进行了探讨;杨钟玄[2]根据新《数学教学大纲》的改革情况,结合当时数学课本弊端,提出要将数列极限的定义由抽象的“ε-N”符号语言改成更为直观语言的建议;匡继昌[3]尖锐地指出教学大纲删去极限内容的错误性,并表示这种无极限的导数模式不是创新,而是一种退步;李倩等[4]对课程标准中所列出的高中微积分内容从教学价值、教学实施方面进行了不同的探讨,认为高中微积分教学要充分体现高中微积分和大学微积分对学生的不同要求,不能让学生产生对运用微积分知识过度依赖的心理。因此,高中课程改革中微积分教学方法研究一直是数学教师教学研究的热点课题。另一方面,虽然我国数学教育工作者关于高中微积分教学研究较为广泛,但是在新课标框架下,探讨高中微积分教学的研究却不多。本文首先总结归纳新课标中微积分内容及其要求变化,然后剖析高中生学习微积分普遍存在的问题,最后有针对性地提出在新课标背景下高中微积分教学的几点策略。
1新课标中微积分内容和要求的变化
新课标对于微积分内容和要求做出了较大调整,尤其是对于理工科学生,其在内容的难度、深度、广度以及学习目标等方面都有很大的提高。表1以新课标A类为例,比较了其与2003年《普通高中数学课程标准(实验)》的异同。经过比较和分析,新标准关于微积分的变化可归纳为以下三个方面:1.1注重与大学数学的接轨。在2003版的高中数学课程标准中,考虑到高中生的认知水平,当时我国高中数学涉及微积分的知识无论是从内容的深度、广度和难度上都较为浅显。在世界范围内,相对于其他发达国家和部分地区高中数学课程标准中有关微积分内容,我国高中数学微积分内容的难度排名也相对靠后[5]。从表1可看出,新课标在微积分内容和结构上作出了调整。在内容上,数列极限、函数极限、连续函数、二阶导数、导数的应用、定积分的理论知识部分有明显的扩充和具体要求。在结构上,逾越极限直接通过大量的实例来理解导数的概念,修改为先学极限,再从极限的基础上给出导数这一数学定义,该教学结构与大学微积分基本一致。另外,新课标改善了高中和大学微积分内容的断点问题,在知识的建构上逐步与大学微积分接轨,其课程的连贯性和延续性得到进一步增强。1.2注重数学符号语言的培养。数学符号语言是一种简洁、高效的思考与表达方式[6]。一直以来,关于是否在高中阶段引入极限符号语言一直存在争议。数学课程标准研制组在《普通高中数学课程标准(实验)解读》中明确指出高中学习极限的弊端:若按照先学极限再学导数的顺序,极限的抽象概念会对理解导数思想和本质产生不利影响[7]。也有不少数学教育学者指出,高中极限内容的删减只会对学生理解微积分会产生障碍。新课标再一次增设了极限内容,对极限内容的学习要求由了解上升到理解的层面,不仅给出了极限的数学符号定义,并且要求学生掌握极限的相关性质及其证明。此外,有关连续函数、导数、定积分的概念,新课标也都给出了严格的定义和证明,这充分体现了新课标对培养学生数学符号语言的表达能力的重视。1.3注重微积分的实际应用。微积分是研究现代数学的基础,也是解决其他领域技术的重要工具。新课标更加强调借助几何直观和物理实际背景来引入微积分思想,并且对微积分的实际应用能力提出了更高的要求。事实上,微积分在研究数学的函数变化、物理学的物体变速运动以及经济学的生产优化等问题中起到关键作用。如在初等数学中,学生对于曲边图形面积和旋转体体积的计算往往倍感无从下手,但从微积分的极限思想出发,将曲边图形和旋转体划分为无数个无限小的面积微元和体积微元,再近似求和,便能有效地推导出曲边图形和旋转体积的求解公式。又如在物理的运动学问题中,对于常见的匀速直线运动等简单的运动形式,学生往往能得心应手,而对于变速直线运动来说,很多学生往往一筹莫展,但如果使用微积分工具便能很好地解决[8]。由此可见,提升微积分的实际应用能力是适应新时代数学教育发展,培养应用型人才的有效手段。
2高中生学习微积分存在的问题
微积分课程思政的必要性和紧迫性
摘要:《高等学校课程思政建设指导纲要》指出,全面推进高校课程思政建设是落实立德树人根本任务的战略举措。微积分课程思政的实施在于教师的引导和挖掘,教师在教学中坚持以学生为中心,做好顶层设计,实施寓教于乐,做到教书育人两手抓,让学生在学习专业知识的同时,树立正确的世界观、人生观和价值观。该文通过微积分知识点与课程思政元素的结合,实现微积分课程思政的有效开展。
关键词:微积分;课程思政;教书育人
微积分作为一门典型的理工科专业基础课程,对后续课程和专业学习至关重要。正如李克强总理在2021年全国两会上对青年学生说的几句话:“不管你们将来从事什么职业、有什么样的志向,一定要注意加强基础知识学习,打牢基本功和培育创新能力是并行不悖的,树高千尺,营养还在根部。把基础打牢,将来就可以旁通,行行都可以写出精彩”[2]。而微积分恰好就是这样的一门基础课。作为理、工、经、管、文、法各专业的通识教育必修课,微积分是一门学时长、课时紧、内容多、知识难的基础课程。如何结合数学学科特点,使微积分课堂教学与思想政治理论教学同向同行,形成协同效应,实现全程、全方位育人的新理念呢?本文从以下几个方面进行了探索:
1微积分课程思政的实施对教师的要求迫在眉睫
1.1专任教师正确认识开展课程思政的必要性和紧迫性
2021年年初,一个网名叫“离灯冬眠”的25岁女生,因为游戏机被母亲砸烂,选择自杀离开这个世界,在遗书中说游戏是她人生唯一的追求和乐趣,失去了游戏就失去了人生的乐趣,这样的案例让教育工作者不得不思考,我们现在培养的部分大学生,专业知识有了,但是世界观、人生观、价值观严重偏离人生正确的轨道,大学毕业就失去了人生目标和崇高理想。因此,在专业教学中开展课程思政,帮助学生树立正确的“三观”,不但必要而且迫在眉睫。作为一名高校数学教师,不但要传授数学知识、数学方法、数学思维、数学技能,还要通过课堂思政教会学生如何做人、做事,形成正确的“三观”,摒弃“思政教育是思政教师的工作,思政教育跟数学教学没有关系”的错误思想,把课堂思政真正落到实处,让学生在学习专业知识的同时,接受思想政治教育,真正成长为有理想、有信念的时代新人[3]。
莱布尼茨数学思想研究论文
一、符号逻辑:“通用数学语言”
莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)
综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。
为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。
关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)
第一阶段,莱布尼茨改进从数字代替概念以其演算,代之以对普通命题经验分析为基础的代数逻辑。他以全称肯定命题“a是b”的形式开始,提出五条基本演算规则:(1)ab是ba(交换律);(2)a是aa(重言律);(3)a是a(同一原则);(4)ab是a或ab是b(化简原则);(5)如a是b且b是c,则a是c(传递原则)。以此为据,他证明了同一和包含两个逻辑系词之间的重要关系,即,如a是b且b是a,则a与b是同一的。进而,他又提出四个定理:(1)如a是b且a是c,则a是bc;(2)如a是bc,则a是b且a是c;(3)如a是b,则ac是bc;(4)如a是b且c是d,则ac是bd。由此可见,莱布尼茨在第一阶段的逻辑演算已相当完善和科学化,为逻辑的系统化打下了坚实的基础。
莱布尼茨数学思想统一性研究论文
戈特弗里德·威廉·莱布尼茨(1646~1716)对数学有两项突出贡献:发明了符号逻辑和微积分。由于这两项成就分属不同的数学分支,人们也往往将其看作莱布尼茨的两种不同工作,忽视了它们之间的一致性,这为研究莱布尼茨的数学思想、完整地理解数学史和科学发现的规律带来不少困难。本文的目的就是试图理解的揭示这种一致性。
一、符号逻辑:“通用数学语言”
莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)
综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。
为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。
关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)