数字化变电站范文10篇
时间:2024-03-18 22:49:30
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇数字化变电站范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
数字化变电站自动化技术探讨
摘要:随着计算机网络技术的不断发展,自动化技术已经深入至多种行业领域并发挥了重要的作用。在现代化的变电站系统建设发展中,数字化建设已经成为重要的系统发展方向,而自动化技术的应用则是促进数字化系统发展的重要基础。本文简要地对数字化变电站中的自动化技术应用进行分析,并就自动化技术的应用功能进行探讨,以期为促进变电站的数字化发展和自动化技术的应用效益提升提供参考。
关键词:数字化变电站;自动化技术;技术应用;功能
在社会经济与科学技术的发展带领下,自动化技术在变电站建设中的应用水平逐渐提升,其不仅有力的促进了电力系统的现代化发展,用时还有利于电网调度可靠性的有效提高,同时为该系统实现安全稳定运行提供了重要的技术支持,最终实现了变电站的数字化发展。所以,当前的设计研究人员应当对自动化技术的应用发展进行深入研究,不断实现数字化功能完善,使其服务于电力资源的合理配置并推动我国的电力行业实现不断发展。
1数字化变电站中的自动化技术应用
1.1光电量测技术
对于数字化变电站来说,传感器工程应用所具备的稳定性能是十分重要的。其主要分为光电式与电子式两种类型的电流/电压互感器。其中数字化变电站中所应用的光电测量技术主要由互感器、交换器、信息处理设备以及连接光缆共同组成。其中根据原理进行变换器分类主要分为半常规与电—光两种类型。其中,前者的电压变换原理主要是依靠电阻与电压分压实现,其中电阻的计算方式为I1=j•(L/N)•I2•(1/R+r+j•L),R=U/I1.电流变换原理主要是依靠带铁芯微型CT来实现的。而后者的电压变换原理主要是依靠逆电压效应来实现的,电流变换主要依靠法拉第效应来实现。其主要的系统构成结构有分别针对电流采样与电压采样工作的电流变换器,以及电压变换器与光电接口装置几部分,并且利用光缆装置进行连接。图1即为光电测量技术的基本光路原理。
数字化变电站探索
在变电站领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站即将进入数字化新阶段。数字化变电站是一个不断发展的概念,目前它是由电子式互感器、智能化一次设备、网络化二次设备在IEC61850通信规范基础上分层构建,能够实现智能设备间信息共享和互操作的现代化变电站。笔者认为,变电站的数字化首先体现在变电站自动化系统的开放式数字化。2006年3月27日完成改造的中国南方电网首座数字化变电站——110千伏曲靖翠峰变电站,经过6个月的投产运行,各种数据采集、传输准确无误,运行平稳、安全、可靠。
一、电子式互感器的使用
电子式互感器的出现,克服了传统互感器绝缘复杂;重量重、体积大;CT动态范围小、易饱和;电磁式PT易产生铁磁谐振;CT二次输出不能开路等诸多缺点。电子式互感器绝缘简单;体积小、重量轻;CT动态范围宽、无磁饱和;PT无谐振现象;CT二次输出可以开路。
目前研究开发中的电子式CT、PT可分成两类:(1)基于ROGOWSKI线圈CT(电磁感应原理,但无铁芯),电容(电阻、电感)分压式PT,先将高电压大电流变换成小电压信号,就近经A/D变换成数字信号后通过光缆送出给接收端,高压端电子设备需要供电,称为有源式互感器。(2)利用光学材料的电光效应、磁光效应将电压电流信号转变成光信号,经光缆送到低压区,解调成电信号或数字信号,用光纤送给二次设备。因高压区不需电源,称为无源型互感器。
110千伏翠峰数字化变电站更换的光电式互感器对保护性能的影响、新型计量系统的精度评估以及新老设备的兼容对整个运行体系都有着直接的影响,它标志着变电站自动化技术向数字化迈出了关键的一步,也为我国数字化变电站的推广、运用打下了坚实的基础。
二、开放式数字化的变电站综合自动化系统
数字化变电站研究论文
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。
由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。
数字化变电站中光电互感器研究论文
1.
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。
数字化变电站光电互感器机械论文
摘要:对数字化变电站中光电互感器的工作原理、结构上的特点和优点进行简单分析,同时阐述光电互感器的应用对电能计量方面的影响。
关键词:数字化变电站光电互感器组成传统互感器有源式无源式电能计量
数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。
随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。
光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。
光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。
变电站自动化系统分析论文
【摘要】:电力系统是经济发展的重要基础和根本所在,变电站自动化的发展情况说明了经济发展的状况。我国对电力系统的发展一直非常重视,并且取得了巨大的成就:西部大开发和东部经济建设服务的"西电东送",三峡工程建设的初步完成。在变电站自动化领域中,由于智能化开关、一次运行设备在线状态检测,光电式电流,电压互感器、变电站运行等操作的不断使用和日趋成熟,并且计算机高速网络在实时系统中不断地开发和应用,变电站自动化系统的数字化发展已经成为今后发展的主流。
【关键词】:数字化;智能化开关;光电式电流
在当今的信息化时代中,数字化也越来越为人们所重视。数字化技术主要体现以下几个方面的特性:首先,数字化是数字计算机的基础,并且数字化是软件技术的基础,是智能技术的基础;其次,数字化是多媒体技术的基础,它为信息社会提供了基础。数字化变电站就是使变电站的所有信息采集,传输,处理,输出过程由过去的模拟信息全部转换为数字信息,并建立与之相适应的通信网络和系统。它的基本特征体现在设备智能化,通信网络化模型和通信协议统一化,运行管理自动化等方面。我国首座数字化变电站-翠峰变电站位于1998年3月3日建成投产,并于2006年3月27日改造为全数字化变电站正式投入运行。经过7个月的投产运行.各种数据采集、传输准确无误.运行平稳、安全、可靠.在全国处于领先地位.并达到国际先进水平.
1.数字化变电站的技术特点和应用
1.1一次设备的智能化
一次设备中被检测的信号回路和被控制的操作驱动回路都采用微处理器和光电技术的设计,这使常规机电式继电器及控制回路的结构简化了,传统的导线连接被数字程控器及数字公共信号网络所取代。可编程控制器代替了变电站二次回路中常规的继电器和其逻辑回路,常规的强电模拟信号和控制电缆被光电数字和光纤代替。
数字化变电站网络通信技术分析
【摘要】当前,各种新型技术被广泛融合应用至变电站的自动化系统中,加速了变电站的数字化变革。当前,综合自动化的变电站已经全面进入了数字化时代,并成为智能化电网系统中最重要的组成内容。较之于传统的变电站自动化系统,数字化变电站的通信网络在结构、功能及重要性等多方面都呈现出明显的不同。本研究就是在明确了数字化变电站的通信标准的基础上,对变电站中的网络通信技术进行了相应的研究。
【关键词】数字化变电站;网络通信技术;网络结构;研究
随着各种先进技术如计算机、信息、自动化等的不断发展,将这些技术充分应用于变电站自动化系统中之后,就极大地推进了变电站的数字化发展。当前,数字化变电站已经成为我国变电站的主流发展趋势,并作为智能化电网中的重要组成,促进了我国电力行业的发展,也为社会提供了源源不断的发展动力。在数字化变电站站中,网络通信技术的重要性不言而喻,其性能的好坏将直接影响到变电站的自动化运行,进而还会影响到数字化变电站的安全。
1数字化变电站的主要特性
1.1一次设备的智能化。较之传统的变电站系统,数字化变电站有着诸多的不同之处。如数字化变电站内部的互感器已经发展成为电子式及光电式。不同于过去的电磁式互感器,这些新型的互感设备具备了更多的功能。如其对外能直接提供数字式的光纤以太网接口,而在其内部则具有可以与外部进行数字通信的智能断路器及变压器等设备,也有些变电站中支架在以此设备上加设相应的智能终端,以便于将信号进行数字式转变,也能利于对状态的监测,从而实现了一次设备的智能数字化。1.2二次设备的网络化。在数字化变电站中,其二次设备除了具备相应的数字化功能与特征外,还拥有对外的网络接口,并且其信号的传输都是在以太网的基础上得以实现的。1.3标准化。自IEC61850这一国际标准实施以来,传统的变电站中的相关信息与网络通信在标准化的差异致使其设备之间的信息交互出现了诸多的问题,但是对于数字化变电站而言,由于其站内的设备都符合国际标准,从而使得站内的设备之间都具备可互相操作的特性。1.4系统运行的自动化。数字化是综合自动化的必然结果,在数字化的变电站系统中,不论是站内的设备,还是信号的传输以及信息的共享都可以自动化。
2数字化变电站中通信网络的要求
变电站自动化系统发展论文
论文关键词:数字化自动化智能化
论文摘要:当今世界,在变电站自动化领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站自动化技术即将进入数字化新阶段。本文论述了数字化变电站自动化系统的特征、结构及功能划分等。
经过几十年的发展,变电站自动化技术已经达到了一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有
的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
一数字化变电站自动化系统的特点
(1)智能化的一次设备
变电站自动系统发展论文
「摘要」在变电站自动化领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站自动化技术即将进入数字化新阶段。本文论述了数字化变电站自动化系统的特征、结构及功能划分等。
「关键词」变电站自动化数字化智能化
变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
1、数字化变电站自动化系统的特点
1.1智能化的一次设备
一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。
变电站自动化系统发展论文
「摘要」在变电站自动化领域中,智能化电气的发展,特别是智能化开关、光电式互感器等机电一体化设备的出现,变电站自动化技术即将进入数字化新阶段。本文论述了数字化变电站自动化系统的特征、结构及功能划分等。
「关键词」变电站自动化数字化智能化
变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
1、数字化变电站自动化系统的特点
1.1智能化的一次设备
一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。