数范文10篇

时间:2024-03-16 21:43:28

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇数范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

小学数学教案:数数、数的组成

教学目标

(一)使学生会一个一个地和一十一十地数1~100以内的数并知道数的顺序.

(二)初步掌握100以内的数是由几个“十”和几个“一”组成的.

(三)记住10个一是十,10个十是一百.

教学重点和难点

重点:会数100以内的数并知道顺序.

查看全文

因数与倍数数学教案

(一)单元教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

(二)单元教学重难点

1.重点:

查看全文

初中数学函数中的数学思想探究

摘要:随着教学新课程改革不断推进和深入,数学思想在数学教学中的的重要必不断凸显。而在我国《新课标》中也明确指出:“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的数学基础知识、基本技能、基本思想方法、基本活动经验。”所以,数学教师在具体的教学过程了,除了基本知识的传授,还要重视数据思想的渗透。而函数在初中数学教育中占有非常重要的地位,不仅是中考时的重点内容,还与很多的高中数学知识有着紧密的联系。因此,在初中数学函数问题中渗透数学思想非常重要,需要从教学策略和教学内容设计两个方面同时发力。本文基于自己的教学实践,对实际的教学中,在初中数学函数中渗透数学思想的方法和策略做简单的分析,以供大家参考。

关键词:数学函数;数学思想;教学策略

一、创造情境,激发学生数学思想

在初中函数问题中,数学教师可以在教学过程中,通过比较恰当的现实情境激发学生的学习兴趣,从而积极推动课堂数学教学的自主进行。我们知道,初中数学函数的学习过程中,概念是比较重要的知识点,一般情况下,讲解某个知识点,教师都会从数学的概念切入,慢慢引入实际需要解决的函数问题,比如商场的打折活动、物理学中的平抛运行等。这些问题比与学生日常的学习和生活息息相关,能够让学习在这个学习的过程中,感受到数学知识的应用范围和价值,从而更好地培养学生的兴趣,为下一步数学思想的渗透打好基础。比如在讲解二次函数的图像与性质一课中,在教学开始之前,教师并没有直接从概念入手,而是向学生展示了两张图片,分别是天上雨后出现的一道彩虹和河流上架起的拱桥,这两个物体呈现的都是一条漂亮的曲线。那么就能够很好地帮助学习理解二次函数的意义,了解与抛物线有关的数学概念。同时,引导学习用生活中其它的图像来找出与图片中类似的物体,从而让学生初步对运用数与形结合的方式来探究问题的解决方式,从中感受数学思想的存在。

二、问题深究,引导学生自主渗透数学思想

让学生学习如何运用数学的思想来解决实际的问题,是在二次函数教学中进行数学思想探究的主要目的所在。经过课堂导入阶段的创造情境激发之后,学生的学习热情得到了激发,具有比较稳定的注意力,此时在教学中进一步渗透数学思想方法是最佳的时机。教师可以让学生在这个阶段进行适当的自主探究,来解决一些数学问题,这就需要在讲解环节,教师只做一般的示范,让学生在其中感受数学思想,从而理解探究数学思想的意义所在,搞清楚思想与方法之间存在的明显区别与微妙的联系。比如教师可以先出示两个非常常见的二次函数:y=x2;y=‐x2,然后带领学生画出这两个二次函数的图像,通过足够的点坐示和坐标系上的曲线依次连接,最终得出这两个函数的图像。之后,请学习进行汇报和交流,教师可以提出问题引发沉重进行更深层次的思考,比如你能否描述一下,二次函数y=x2的图像形状吗?x轴与图像象之间有无交点?如果有,交点坐标是多少?当x小于0时,随着x值的增大,y值会如何变化?反之,x大于0时会如何?当x取值为多少时,y的值最小?最小值又是什么?是如何得出的?二次函数的图象是轴对称图形吗?如果是,它的对称轴是什么?y=‐x2同理。这样,经过了这一番问题的探究,教师引导学生总结当前阶段的一些知识点,比较y=x2与y=‐x2的函数图像,归纳出二者之间的联系是开口方向不同,抛物线形状相同,但都关于y轴对称,并且有共同的顶点。接着,继续引导学生学生画一画y=2x2与y=12x2的函数图像,观察并分析其与y=x2函数图像之间的相同点和不同点。由此引出开口大小不同的特点,并找到开口大小与二次项系数之间的关系,再将这两个函数图像与y=‐x2图像进行比较,对开口大小顺序进行排列。通过第三次探究过程,可以引导学生对二次函数y=ax2的图像特点进行总结,当a大于0时,函数图像开口方向向上、关于y轴对称、顶点坐标为(0,0);a值越大,函数图像开口越小;a小于0时,函数图像的开口方向向下,关于y轴对称,顶点坐标为(0,0);且a值越小,函数图像开口越大。在此过程中,非常巧妙地渗透了数形结合的思想,通过对二次函数解析式和图像的分析,让学生全面掌握了y=ax2的图像性质。

查看全文

数学读数写数管理论文

有些同学一见到大数目,就不知怎么读,还有的同学知道是从高位读起,于是就从个位数起,个位、十位、……一直数到最高位,这样读,不但慢,而且易出错,只要数错一位,整个数就会读错。其实,读数很容易,会读四位数的同学,都能准确、快速地读出多位数。

第一步:先把数从个位起每四位一级进行划分。第二步:先读万级的四位或四位以下的数,添上“万”字后再读个级的四位数。记住:万级和个级的读法一样,但要添上单位“万”字。

87658765

例如:─────

万级个级

读作:八千七百六十五万八千七百六十五

查看全文

众数与中位数数学教案

(一)知识教学点

1.使学生理解众数与中位数的意义.

2.会求一组数据的众数和中位数.

(二)能力训练点

培养学生的观察能力、计算能力.

(三)德育渗透点

查看全文

高一数学教案对数函数

教学目标

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.公务员之家,全国公务员共同天地

查看全文

初中数学函数问题数学思想研究

函数应用题一直是中考数学的必考内容,部分学生缺乏对这部分内容系统的解题思路与计算方法的学习,在解决这类问题时存在一定的困难.在初中数学函数部分的教学中,对这一部分有所涉及,也进行了一些相关知识的讲解和训练,但是缺乏对函数问题的解题思路与解题技巧的深入研究和专项训练.现阶段关于初中数学函数应用题的理论与实践研究较为有限.本文以人教版初中数学为例,结合理论与教学实际,梳理解答函数应用题的常用技巧,总结了常见的问题形式与解题思路,以期引起更多师生的思考.

一、核心思维能力

学生在解决函数应用题时最关键的就是把握一次函数、一元一次方程、一元一次不等式组、二元一次方程组及一元二次方程等最基础的概念的内涵,与此同时,学生需要把握一元一次方程与不等式及二元一次方程组的概念和关系,熟悉哪种具体问题情境对应的是哪种函数模型并写出相应的函数关系式.同时要求学生学会结合函数的图像讨论函数的性质,将实际问题与数学问题结合起来,感受函数在解决运动变化问题中的重要作用.学生首先要具有将实际生活问题转化为函数模型的能力,在此基础上列出相应的函数关系式.在学生求解函数应用题的过程中,解方程的过程并不是这种类型题练习的重点,学生更需要加强的是在分析、思考与解题的过程中提高自己应用一些数学思想的能力,如转化思想、数形结合思想、分类讨论思想等,通过系统、科学的习题训练增强学生数学思想方法的实践能力并提高学生的解题速度.

二、函数应用题知识储备要求

1.基础———解方程和不等式的能力和熟练的计算能力及技巧.学生在解决函数应用题的过程中,列出方程式或不等式是最关键的一步,能否正确算出答案也是非常重要的.这就要求学生熟知解方程和不等式的正确步骤,同时要想快速解出结果,对学生的运算能力也有一定的要求.教师在教学过程中要注意训练学生的基础知识应用能力和解题技巧熟练程度,这样可以帮助学生更高效地解题.2.关键———基本函数和不等式的概念及其关系.解决函数应用题最重要的是把题目中的实际问题抽丝剥茧并将其转化为列出函数关系式的一个个条件,从而准确把握解题的关键步骤.学生要熟知每一种函数模型及不等式的基本形式,这样才能快速地根据条件列出相应的函数关系式或不等式组.思考的角度不同可能会产生不同的解法,但是最简便和快速的方法只有一种,这就是提高学生解题能力和速度的关键.因此,在教学过程中,教师不仅要要求学生解出问题,算出答案,更要注重学生分析题目条件能力的提升,使学生解决函数应用题的能力得到系统提升.3.根本———方程、不等式与函数之间的密切联系.一元一次方程和不等式是函数部分的基本概念,有一元一次方程和不等式及一元二次方程和不等式两种.对于一元一次方程和不等式,在初中函数应用题中一般涉及的是一元一次不等式与一次函数的应用及对题中所给图表信息的提取,需要根据题目信息设出方程或列出不等式并求解,这体现了方程、不等式与函数之间的密切联系.另一方面,有少部分应用题也会涉及一元一次不等式组及一元二次方程或二元一次方程,这对学生根据题意设出方程的要求就更高了,要能够辨别题中涉及的函数模型是哪一种.此外,要对不等式组的应用与方案设计有一定的了解.

三、常用方法例析

查看全文

高一数学教案指数函数

学目标

1.使学生掌握指数函数的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合公务员之家,全国公务员共同天地的思想方法.

查看全文

数与代数数学教案

复习内容

整数、小数、分数、百分数的含义等。

复习目标

1、使学生系统地掌握整数、小数、分数、百分数的意义。

2、使学生熟练的掌握十进制计数法和整数、小数数位顺序表,并能正确的熟练的读、写整数与小数,会比较数的大小。

3、能熟练地进行小数、分数与百分数的互化。

查看全文

分数乘整数数学教案

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

查看全文