热能范文10篇
时间:2024-03-08 02:24:08
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇热能范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
纺织车间热能转移技术论文
论文关键词:纺织车间;热能转移技术;节能技术;细纱车间
论文摘要:由于各车间热量产生量不同,纺织企业在冬季能量浪费严重。本文提出了纺织车间热能转移技术,即通过各车间热能相互转移分配来达到热能节约利用的目的。该技术可以达到十分良好的节能效果。本文详细介绍了这项技术的原理及方法,并以工程实例来验证该方法的节能效果,为该方法的大规模应用和推广提供技术参考。
纺织企业用电量很大,约和整个纺织企业的工人工资相当。作为劳动密集型的纺织企业,在原料成本和人工成本已无潜力可挖的情况下,节能已成为纺织企业可持续发展、增加企业利润、提高企业核心竞争力的最佳选择。
目前很多纺织企业有的车间在冬季需要供热,有的车间则在冬季把大量的热量排出室外,能量比较浪费严重。如果能把排出室外的热量转移至需要供热的车间,则可以节约大量的能量,该技术本文称为纺织热能转移技术。纺织车间热能转移技术是纺织车间节能的有效途径之一。合理使用热能转移技术,可使纺织车间冬季可不设供热系统而达到工人热感觉要求,节能减排效果十分明显。
1纺织车间热能转移技术的原理
部分纺织车间如细纱车间由于机器发热量大,在冬季车间热量仍有剩余,需要大量排放到室外大气中,大量热能白白浪费;而部分纺织车间如络筒车间和前纺车间在冬季则需要供热。此时可采用热能转移、风量平衡的方法,把热量剩余车间的热量转移至需要供热的车间。该技术称为纺织车间热能转移技术。该技术的核心在于:不消耗或消耗很少的能量,将部分纺织车间的热能转移至另外的纺织车间。
酒店废水热能收回思索
笔者针对某大酒店的蒸汽冷凝水能源大多未被利用的情况,定量分析不同条件下的蒸汽冷凝水利用方案。利用废水源全热回收高温热水机组在制冷季节提供生活热水,供暖季节为空调系统提供热源补充,并对其进行节能计算与分析。
1系统简介
洗衣废水热量回收系统,通过废水源全热回收高温热水机组内部的蒸发器和污水热交换器的作用吸收污水热量(降低污水的排放温度),回收原本从排水管排出的废高温热水的热量,通过热泵和高温冷凝器的作用加热生活用水,达到能源循环回收利用的目的。利用板式热交换器回收蒸汽冷凝水的热量为空调系统回水进行加温。达到能源回收利用的目的。
2设计参数输入
洗衣房每日耗能:冷水30~40t,热水40~30t洗衣房日产废水:70~80t(37~40℃)间歇排放蒸汽冷凝水:蒸汽冷凝水(80℃)量根据制冷和采暖季节蒸汽使用情况确定情况1——制冷季节蒸汽用量少,10t情况2——采暖季节蒸汽用量多,60t。
3设计说明
热能与动力工程节能技术探讨
摘要:简述热能和动力工程的装置,分析热能与动力工程的发展现状,提出促进热能与动力工程节能发展的措施,以期对相关工作有所借鉴。
关键词:热能工程;动力工程;节能技术
充足的能源供给是促进国家发展的物质基础之一,就当前的能源格局来看,天然气、煤炭、石油等不可再生能源占据整个能源使用率的90%以上,但是这并不是长远之计,毕竟这些不可再生的资源总有被消耗完的一天。故而开发和利用新能源已成为当前重要的节能措施,热能与动力工程是当前用得较多的方式,本文将对热能和动力工程在开发与利用过程中采用的节能技术进行分析,以期能够促进新能源得到更加充分的开发与利用,在满足人们需求的同时也能为中国的经济发展做出贡献。
1热能和动力工程的装置
1.1热能装置。随着中国科学技术的发展,热能装置不仅被利用于日常生活中,而且在生产中也得到了广泛的作用,对生产和生活都有极其重要的推动作用。对热能装置进行深入了解能够明确其操作的具体流程,这有利于促进热能装置的使用[1]。当前的热能装置在使用时需要通过燃烧燃料来保证热量供给,进而通过热能装置和其他技术手段的共同作用将热能转化为有效的机械能,通过燃烧和其他技术一起工作的热能装置叫做热能动力装置,最为常见的热能动力装置有两种:a)依靠燃料燃烧所产生的热气进入发动机内,进而促进了其他能量之间的相互转化,并能够进行循环使用;b)将燃料在燃烧过程中所产生的热量通过技术手段注入到相关液体中,并将液体汽化后所产生的蒸汽导入发动机,以此方法促进热量之间的传递和转化,进而达到热能被转化使用的目的。1.2动力工程装置。动力工程是一项针对能源转换、传输及利用的技术,在提高能源利用率方面有极其重要的作用,同时也能降低能源消耗及对环境的污染程度,进而推动能源的可持续发展。能源与动力工程相结合,除了能够推动煤炭、石油、天然气等传统能源的开发与使用外,还能更加高效地利用核能、风能及太阳能等新能源,推动中国动力工程的发展[2]。当前的动力工程大多应用于火力发电厂,火力发电厂在生产电能时,需要遵循能量守恒定律,确保热能能够及时转化为电能,在此基础之上使热能与动力工程能相互作用,进而为输送电能发挥出其该有的作用。
2热能与动力工程的发展现状
热能与动力工程节能技术分析
摘要:随着经济的快速发展,中国能源需求量不断增加,但是部分能源属于不可再生能源,过度的开采导致未来能源不足,因此寻求可再生的能源,成为当今社会发展的最大问题。开发使用新动力成为节约不可再生能源的主要方式,其中热能和动力工程具有广阔的发展前景。文章通过分析节能技术的重要性,阐述了热能与动力工程工作原理,分析了热能与动力工程实际应用中存在的问题,并提出了相应的优化措施。
关键词:热能;动力;节能
随着国家高速发展带来的能源大量消耗,不可再生能源已逐渐濒临临界点,为了保护能源的存在,同时,满足国家日益增长的能源需求,开发新能源成为当前的主要发展趋势。热能和动力工程作为新的替代能源,已经逐渐融入到我们的生活之中,其可以有效减少能源的损耗,从而促进社会的发展,缓解人与生态之间的矛盾,同时为工业发展提供充足的能源保障[1]。
1节能技术重要性
从我国的热能与动力工程构成比例来看,通常采用不可再生能源作为主要能源使用方式,包括煤炭、石油等,而在不可再生能源大量消耗过程中,对环境所造成的危害也是巨大的,严重影响了人们的生活环境。因此,大力发展新能源,开展节能技术,具有推动国家发展的重要作用。新型能源是大自然赋予人类另一种宝藏,风能、太阳能、热能等自然能源的出现,为人类发展带来了新的可能,有利于实现人与自然和谐相处的美好展望。同时,节能技术的推广,可以保证国家在发展经济的过程中,坚持可持续发展,从而缓解日益加重的环境问题,使得企业发展效益与经济环保效益得到双重保障[2]。
2热能与动力工程实际应用存在的问题
煤化工热能系统的评价方法探讨
1化工热能动力联合生产技术
[1]长期以来,不同功能系统多是相互独立的。常规热能动力系统的核心为热力循环,侧重于热与功的转换利用,局限于物理能范畴,受制于卡诺理论框架。而传统化工生产则侧重于化工工艺,想方设法把原料中的有效成分最大程度地转化为产品。它们追求单一功能目标的思路无法破解能耗高、化学能损失大及环境污染严重等难题。因此,系统整合思想受到重视,多能源互补和多产品联产已成为当今世界能源动力系统发展的主要趋势与特征。多联产是指通过系统集成把化工过程和热能动力系统整合,在完成发电、供热等热工功能的同时生产化工产品,实现多领域的多功能综合,其本质特征是系统集成,更合理的物质与能量综合梯级转换利用。图1为某化工热能动力多联产示意图。根据图1,化工生产过程为原料的加工和转换过程。在此过程中,需要与热能动力系统发生诸多联系,包括由热能动力系统供给反应所需的蒸汽和动力装置所需的电力等,而化工过程副产的部分蒸汽可进入热能动力系统中,进行全厂的平衡。现代化工生产在探求分产能效提高的同时,越来越趋向于追求总体效能的提高。例如,通过对某煤制烯烃项目的验收,发现全厂热能动力系统约占总耗能的28%,工艺装置能耗占总耗能的72%。工艺系统的能源效率很难进一步提高,但是热电的炉机配置和供电模式对全厂综合能效影响较大,进行系统优化后可较大程度提高全厂综合能效水平。图2为煤气化热能动力多联产在化学工业中的应用。图2所示项目以最大限度地优化利用煤气化产生的合成气组分为基础,向化工生产装置(如,醋酸、醋酐装置)提供CO气体,向化工生产装置(如,合成氨装置)提供H2,同时充分利用合成气中的CO2生产尿素等,从源头上减少温室气体的排放,并进行酸性气体的处理,实现脱硫;部分合成气经过处理后进入燃气轮机,燃机排气进入余热锅炉,余热锅炉产生的蒸汽部分直接用于供热,其余进入汽轮发电机组,从而实现热能、动力多联产。传统煤化工产业存在能耗高、污染重、规模小、工艺技术落后等局限,其发展正面临着原料供应、环保、新兴产业冲击等三个方面的挑战,而燃煤电厂在发展过程中也遇到能源利用效率没有实质性突破和环保压力越来越大的困境。煤化工和发电两个系统单独运行时,对能源和资源的利用并不是最充分的。如果把发电和煤化工结合起来,可以使得温度、压力、物质的梯级利用达到最佳,实现效率最高、排放最小,两者相互结合和促进。煤气化热能动力多联产是将煤气化产生的合成气经过处理后,用于联合循环发电和用于化工产品的生产,其比例可以调节,并且生产化工产品的弛放气可以进入燃气轮机发电。它是煤气化、气体处理、气体分离、化工品的合成与精制和联合循环发电五部分有机耦合的一种技术。通过整体优化,相对于独立分产系统,其总能利用率提高,污染物排放降低,经济效益提高,势必成为未来能源化工产业发展的重要方向[2]。目前,煤化工热能动力多联产系统集成和设计优化尚未形成完整的理论体系,优化方法、评价准则等基础问题亟待突破。对多联产认识还存在许多误区,如把多联产看作是相应的化工与动力的简单联合,各自保持与分产时的相同流程;把多联产简单地理解为多产品系统等。煤化工热能动力多联产系统中,化工动力侧多是希望运行在设计工况,而通常把热力系统的运行工况分为设计工况和变工况。设计工况是在给定的设计参数与要求下的基准工况,随着环境大气条件、外界负荷或系统本身等变动,热力系统总是处于非设计工况运行。为了避免变工况给系统分析带来的困难,本文中采用全年运行工况,突破设计工况点的旧框架,全面考虑全部可能运行区域的特性,以及相应的评价准则与设计优化方法等。分析化工热能动力系统的所有可能运行工作状况(稳定工况和过渡态工况)的总和,科学地描述与评估总能系统的性能特性,对煤化工热能动力多联产项目的选择具有一定的指导意义。
2传统热力性能评价准则
长期以来,热力学第一定律被广泛应用。对于单一能源输入和单一供能输出(如单纯供热或纯发电等)的能源动力系统来说,热效率能够比较好地描述系统能量转换利用的有效性与优劣,也比较简单易懂。但对于功、热并供与化工、动力联产等复杂的系统,由于没有区分功与热、化工与电力等品位差异及其在价值上的不等价性,就不适用了。最初,功、热并供系统常采用两个指标(热效率和功热比)来综合评估。若对比的某个系统的两个性能指标都好,才能得出明确的结论;如果出现“一好一差”的情况,就很难评说哪一个系统更好了。有关研究相继拓展到冷-热-电联产系统和热、电分摊理论问题。尽管许多研究有了重要进展,但至今没有解决问题,且化工-热能-动力多联产系统集成优化比热-电联产系统还要复杂得多,所以越来越多的人认识到单纯从热力学第一定律的角度,无法合理评价化工-热能-动力多联产系统的优劣。后来,有些学者采用热力学第二定律。火用表示一定参数工质在基准环境下所能做功的最大可能性,将“质”与“量”结合起来去评价能量的价值,改变了人们对能的性质、能的损失和能的转换效率等问题的传统看法,开拓了一个新的热工分析理念。热力学第一定律效率(简称热效率,又称总能利用效率)是联产系统各种形式的能量输出的总量Qout(包括化工产品、发电量、制冷量与供热量)与输入能源总能量Qin(所消耗的一次能源总量)的比值。该值越高,表明系统的热力性能越好。热效率把化工产品与热工产品(功、制冷量供热量)等不同品质与品位的能量等同看待,直接相加。因此,基于热力学第一定律的系统热力性能评价准则,只是反映系统能量转换利用的数量关系。既没有对不同有效输出的品质与品位加以区分,又没有合理反映产生有效输出所消耗能量的分摊情况[4]。虽然热效率应用得最早,而且至今还得到应用,但它通常只适用于单一功能系统,而对于化工-动力联产系统等多功能系统来说,则是不科学与不合理的。[5]在联产系统和参照的分产系统输出相同的产品(化工产品种类和量与热工产品种类和量)条件下,两者总能耗之差的相对比值即联产系统相对节能率Esr(或Est),Esr=Qd-QcogQd(1)式(1)中:Qd———参照的分产系统总能耗;Qcog———联产系统总能耗。相对节能率体现的是联产系统与参照的分产系统的对比。关注联产系统与参照分产系统相比时能源消耗的节约情况。鉴于联产系统与分产系统中化工原料、产品与热动原料、产品的类型和数量存在不一致的情况,需要界定边界条件。例如,相同的能源输入量或相同的产品输出量等。此外,联产系统和与其比较的参照分产系统生产的化工产品和热工产品的类型和量以及它们之间比例(如化/动比等)应该有个合理的界定。不同的化/动比,计算出来的节能率并不相同,有时也会出现“化/动比越大,节能率就越高”的结论。有的学者通过建立多联产系统化、电分摊理论模型,分析化工生产过程和热-功转换过程的性能特性、能耗分摊情况,使得计算结果更具有针对性。应用相对节能率作为联产系统评价准则时,正确选择相应的参照分产系统性能基准(简称参照基准)非常重要。通常采用定折合性能基准法和当量折比系数法等。定折合性能基准法是假定参照的分产系统中相关的性能均为一个定值时计算出的性能基准,如某焦炉煤气联合循环效率为52%,某焦炉煤气制甲醇能耗44.9MJ/kg等。当量折比系数法是通过规定不同燃料之间热值比值的一个当量折比系数来计算联产系统的参照基准。如假定1kg焦炭的热值与0.9714kg标准煤相当,表达不同能源之间关系。采用不同参照性能基准进行分析时,在数量变化率上有较大的差异,但总的变化趋势大致相同。事实上,相对节能率与热效率一样,都把不同的有效输出等同对待,没有区分它们在品质与品位上的不等价性,仍局限于热力学第一定律概念;且应用范围较窄,特别是多能源输入时,出现太多的参照分产系统(如双能源输入和双产品输出的系统就需4个),不但使得性能指标量的计算变得复杂,而且使系统性能定性比较模糊不清。许多学者尝试应用热力学第二定律来处理不同能量在品质与品位上的不等价性问题,它以各种能量的火用(最大理论做功能力)来进行统一评价,并由此推出基于热力学第二定律的火用效率。火用效率是将功与热合并到一个合理的综合指标中来统一评价的准则,定义为能源动力系统输出的总火用(Eout)与输入的总火用(Ein)之比值,即所产功及输出热量中最大转化功与输入总火用之比值:ηex=Eout/Ein=(P+BQ)/Ein。(2)式(2)中,B为折扣系数,它指代由热转化为功的最大可能性,由卡诺循环效率确定,用热力学第二定律来定量评价。火用效率比热效率更合理之处在于:基于热力学第一定律的评价只考虑了化工产品与热工产品的热性能,且忽略热工产品中电、冷、热之间的差别;火用效率对它们的品位或价值有不同的评价。可见,火用效率的确在热力学上更加正确地看待不同能量的差异,注意到了不同输出在热力学方面的不等价性。但是,火用的概念是从热转功的最大可能性出发,并不适合于用来描述化工生产过程和制冷过程等能量转换利用问题。另外,化工产品的火用与热工产品的火用以及冷火用与热火用等都难以选择同一的基准环境。为此,作为评价准则同样存在一定的不合理性。对于功-热联产系统来说,火用效率在热力学上把能量的量与质相结合起来,将功与热合并到一个综合指标中来统一评价的准则。根据热力学第二定律,功能够全化为热,而热是不能全化为功的。两者虽然可用同一量纲表达,但存在明显的品位差别,功的品位比热高得多,且功与热在经济上的价格也不是等价的。许多工程技术人员对经典的火用概念多限于理论上理解,与实践应用相距甚远,因此,至今未能得到普遍使用。如果从其它角度来定量评定不同能量的价值,就可以得出另一种不同能量价值比和定义出另一种评价准则,或者称之为广义的火用效率。经济火用效率ηEC提出另一种规定价值比B的方法,即系统供热与供电(功)的售价之比:B=CR/CW。(3)式(3)中,价值比B联系实际的经济效益,一定程度上更实际地反映功、热并供装置的性能,从而反映出热力系统的能量转换利用的优劣。经济火用效率只考虑了热与电(功)的售价比,没有考虑不同燃料的价格不同。这在比较使用不同燃料(其价格可能差别很大,如汽油与原煤)的装置时就不够全面。为了改进这一点,可在经济火用效率的基础上再加上燃料价格的考虑,从而提出经济火用系数XEC,XEC=ηEC×Cw/Cf。(4)式(4)中,Cw/Cf是单位能量电(功)与燃料的价格比,反映了燃料投入所获得的经济增值比例(未考虑初投资等成本)。当然,经济火用效率和经济火用系数是否合理,与热/电(功)售价比、电(功)与燃料的价格比等定得正确与否有关。实际上,影响热、电(功)售价的因素很多,经济火用效率和经济火用系数用来进行化工热能动力多联产系统的设计优化,存在一定的不确定性。
3能量综合梯级利用率
[6]20世纪80年代初,我国著名科学家吴仲华先生提出各种不同品质的能源要合理分配、对口供应,做到各得其所,并从能量转化的基本定律出发,阐述了热能综合梯级利用与品位概念,倡导按照“温度对口、梯级利用”能源高效利用的原则。近期,相关研究从物理能(热能)的梯级利用扩展到化学能与物理能综合梯级利用,提出冷-热-电联产系统能量梯级利用率与化工热能动力联产系统能量梯级利用率等新准则。在能源动力系统中,物质化学能通过化学反应实现其能量转化。因此,物质能的转化势必与其发生化学反应的做功能力(吉布斯自由能变化△G)和物理能的最大做功能力(物理火用)紧密相关。对于一个化学反应的微分过程,存在如下关系:dE=dG+TdSηc。(5)式(5)中,dE———过程物质能的最大做功能力变化;dG———吉布斯自由能变化;TdS———过程中以热形式出现的能量;T———反应温度,K;dS———过程熵变化;ηc———卡诺循环效率,ηc=1-T0/T;T0———环境温度,K。上式描述物质火用、化学反应吉布斯自由能和物理火用的普遍关系。从而揭示如何分别通过化学反应过程和物理过程实现物质dE的逐级有效转化与利用。在此基础上,定义表征联产系统化学能梯级利用特征的化学能梯级利用收益率,如式(6):Rgain=ΔEthnetEs-(Ep+Ethnet)。(6)式(6)中,Rgain———联产系统化学能梯级利用收益率;ΔEthnet———联产系统热转功循环所得热火用相对于分产系统的增长量;Es-(Ep+Ethnet)———从分产系统看,进入系统的化学火用(Es)除部分转移到产品中(Ep)、部分转化为热转功循环的有效净热火用(Ethnet),其余均消耗或损失于系统内部。这部分化学火用损失即为联产系统化学火用梯级利用的最大潜力。因此,Rgain代表了多联产系统化学能梯级利用的收益占分产系统的化学火用损失(化学火用利用潜力)的比例,即联产系统通过集成整合成的化学能梯级利用收益率。它是量化描述联产系统中化学能品位梯级利用水平的一个最重要指标。若在化工动力联产系统集成时,以化学能收益率Rgain作为优化目标,把化学能梯级利用水平与系统集成特征变量和独立设计变量以及联产系统性能特性等关联起来,就可构建基于化学能梯级利用准则的多联产系统设计优化方法。
纺织车间热能转移技术分析论文
1纺织车间热能转移技术的原理
部分纺织车间如细纱车间由于机器发热量大,在冬季车间热量仍有剩余,需要大量排放到室外大气中,大量热能白白浪费;而部分纺织车间如络筒车间和前纺车间在冬季则需要供热。此时可采用热能转移、风量平衡的方法,把热量剩余车间的热量转移至需要供热的车间。该技术称为纺织车间热能转移技术。该技术的核心在于:不消耗或消耗很少的能量,将部分纺织车间的热能转移至另外的纺织车间。
发热量较大的车间主要是指细纱车间。细纱车间用电一般占全厂吨纱基本生产用电的60%~70%,除一部分转化为加工产品的机械能外,绝大部分电功率转化为热能散发到车间中。细纱机的主要产热部件是电机,电机表面温度甚至高达60℃[1],远远高于车间的温度。因此为节约能源,目前细纱车间的电机基本上都单独进行排风,称为工艺排风。由于细纱车间热量过剩[2],无论冬季还是夏季,工艺排风都排至室外大气中。除工艺排风外,细纱车间的车间回风[3]称为地排风。根据国家标准,细纱车间的温度一般也高于其他车间的温度。实际纺织车间中,冬季细纱车间的温度甚至比前纺并粗等车间的车间温度高10℃以上。
发热量较小的车间包括有后纺的络筒车间、前纺的并粗车间等。这些车间的机器数量较少,机器排布较稀,整个车间总体发热量较低。在冬季,仅靠机器发热量不足以保证车间的温度。为达到国家标准要求的温度,需要从外界输入热量。
纺织车间热能转移技术是指在冬季,把细纱车间的热量转移至后纺的络筒车间、前纺的并粗车间等产热量较小的车间。通过这种车间热能的相互转移分配,来节约能源。
2纺织车间热能转移技术的应用
热能与动力工程节能技术探索
摘要:在建设工程的实际过程中,对节能技术进行探索和研究以及合理化的运用,使热能和动力形成的损耗能够有效降低,从而提升生产的实际质量和基本效率,节省能源资源。本文就此展开探讨和分析,提出了相关的建议和措施,为促进资源节约型社会的建设和发展提供参考。
关键词:热能;动力工程;节能技术;发展措施
能源是生存和发展的基础,能够提供强大的动力支持。从世界范围来看,石油、煤炭和天然气都属于不可再生能源,但对于这类能源的运用程度比较高,占能源总量的70%以上。而对于清洁性能源,如风能、水能、太阳能的运用就比较少。不可再生能源的总量有限,我们不仅要节省能源,对于新能源也要进行一定程度的开发和利用,这是时代进步和发展的需求。在这之中,热能和动力工程的发展前景广阔,对于行业的发展和研究已经取得了一定的成果,但在运用节能技术方面还需要加大研究的力度。
1工程发展的实际状况
1.1热能损耗。一般来说,在运行设备的过程中,发电厂在热能方面会产生损耗。产生的热能损耗会使发电厂的经济生产效益降低,同时影响实际的发电质量。对于热能额定功率较小的设备来说,进行节流节能起到一定的作用。在设备的运行功率超过额定功率的情况下,节流设备通过提前设定的数值和信息对于运行设备能够进行基础性的调节,降低负荷承载[1]。但运行设备的实际生产过程中,在节流环节会产生一定的问题,损失热能,以至于输送的能量不符合相关要求,对于供电系统运行的安全和稳定形成了阻碍。1.2湿气损耗。发展工程供应系统的过程中,湿气损耗是比较严重的问题。主要体现在以下3个方面。1)在蒸发和膨胀的过程中,水蒸气会逐渐形成小水滴,如果产生聚集,对于系统的实际工作就会产生一定的影响。2)水滴运行的速度和蒸汽运行速度不一致,通常蒸汽要比水滴的运行速度快,就会损失湿气。3)产生聚集的水滴过多,对于湿气的运行方向和速度会产生一定的影响,直接导致损失热能。1.3环境污染。运用热能和动力的实际过程中,对于环境造成的污染比较严重。主要体现在以下几个方面:空气、噪音、放射性物质、热能污染等。空气污染的形成是因为在传统能源支撑下的重工业以及汽车尾气、居民取暖产生了污染。形成噪音污染是因为发电厂和相关工业工作中运用的机械设备的噪音过大。形成放射性物质污染是因为对于核能源进行实际使用的过程中出现的泄露和爆炸问题引发了污染[2]。造成热能污染主要是因为相关企业、工业和人们在生产生活的过程中,对于热能运用时的流失和浪费。
2发展节能技术的措施
热能动力联产系统节能优化设计分析
【摘要】近年来,能源问题备受人们的关注,为了缓解能源危机,更多的能源工程逐步开始实施,尤其是热能动力联产系统的应用,虽然实现了能量形式的转变,但其在系统的运行过程中却存在着极大的能量消耗与损失。为了适应当前可持续发展的要求,热能动力联产系统必须加以节能优化与改造。基于此,论文分析了热能动力联产系统的节能优化设计路径,对于提升热能动力联产系统的稳定、可靠运行具有重要的意义。
【关键词】热能动力联产;能源节能;优化设计
1引言
近年来,随着技术的进步,工业领域面临着新的发展契机,热能动力联产系统在工业领域的应用日益普遍。热能动力联产系统具有极高的独立性,多为热力循环方式,要维持系统的高效运转,降低系统运行时的能源消耗,各个工业企业都需要结合自身的发展现状,进行热能动力联产系统的节能优化与改进,降低系统运行时的能源消耗与环境污染,带动工业现代化的发展步伐。
2热能动力联产系统运转现状
2.1阶梯型能源的利用。在传统的工业发展领域,热能动力联产系统运行时的理论基础是卡诺定量,在整个运行与转换过程中,由于对燃料化学能品位的利用十分有限,常常存在较大的技术与操作局限。在当前工业现代化的发展过程中,要实现热能动力联产系统的优势,需以传统理论为基础,加强各个品位之间的联系性,使得化学能品位可以与热能、自由能品位紧密联系,在关联品位的理论基础上,化学能可以通过对控制盒的转换联产,来达到集成性机理的目的【1】。相关实践表明,集成性转换与能量品位转换之间存在着紧密的联系,这种联系使得二者在一定条件下能够实现耦合,将动力一侧与化工一侧全面整合。2.2能源一体化利用。能量一体化利用同样是热能动力联产系统的核心理论,一体化利用主要是通过对能量与CO2的控制来实现的,采用的先污染后治理的理论。在热能动力联产系统的运行过程中,首先通过在热力系统中脱除流程尾部的方式,使得能量能够与CO2控制加以有效实现,达到良好的污染治理效果【2】。能源一体化利用原理下,化学能的阶梯级状态使得CO2能够处于能耗分离状态下,实现了二者的充分融合,大大提升了能量的利用效率,CO2的排放量有所降低,热能动力联产系统运行时具有节能减排效益。
化学能与热能教案
一、教学设计
能源与人类的生存和发展息息相关。本章通过对化学反应中能量变化的探讨,使学生感悟到过去化学反应在人类利用能源中所充当的角色,在未来人类解决能源危机、提高能源利用率和开发新能源等方面中的关键作用,以激发学生学习化学的兴趣,教育学生关心能源、环境等与现代社会有关的化学问题。
本节课的教学是围绕化学能与热能的关系而展开的。教学分为三个部分:
在第一部分中教材先从化学键知识入手,说明化学键与能量之间的密切联系,揭示了化学反应中能量变化的主要原因。然后分析了化学反应过程中反应物和生成物的能量储存与化学反应吸收还是放出能量的关系,为后面强调“与质量守恒一样,能量也是守恒的”的观点奠定了基础。
在第二部分中教材通过三个实验,说明化学反应中能量变化主要表现为热量的形式,提出吸热反应和放热反应的概念。这部分内容强调了科学探究和学生活动,让学生在实验探究中认识和感受化学能与热能之间相互转化及其研究过程,学会定性和定量的研究化学反应中热量变化的科学方法。
在第三部分中教材为了拓宽学生的科学视野,图文并茂地说明了生物体内生命活动过程中的能量转化、能源与人类社会发展的密切关系,使学生建立正确的能量观。
地热能在建筑环境的应用
摘要:地热能作为一种绿色清洁能源,在建筑建设中将发挥重要作用。研究介绍不同种类的地热能在建筑环境、建筑节能中的应用形式,探究浅层地热能、水热型地热能、干热岩型地热能等多种形式地热能的优势与潜力,讨论建筑环境中地热能的理论与实际应用。
关键词:地热能;浅层地热能;水热型地热能;干热岩型地热能;建筑环境
随着城市化建设的不断发展,供热供暖、生活热水等能源消耗占整个建筑能耗的50%左右[1]。地热能作为一种绿色环保、可再生的能源,在建筑节能方面具有应用潜力。随着技术的不断发展更新,在一些环境友好城市已经实现对浅层地热能的开发与利用,达到保护环境、提高人们生活水平的效果。对地热资源的合理开发利用已受到各界的重视,对地热能的开采研究已成为当下的研究热点。地热能的能量来自地球内部的熔岩,并以热力形式存在,并且地热能的储量也非常可观。地层深处的地热能经由高温熔浆、地下水传递到地表附近,然后利用一系列设施设备对被地下水传递到地表的热力进行捕获利用。综合考虑热流体传输方式、温度范围以及开发利用方式等因素,地热资源可分为浅层地热能、水热型地热能和干热岩型地热能。
1不同地热能在建筑环境中的概述
1.1浅层地热能的优势与应用
浅层地热能资源指蕴藏在浅层岩土体、地下水或地表水中可利用的热能资源。浅层地热能的能量一般储存在距离地表200m深的岩土体、地下水中;有的直接存储在地表水中。浅层地热能温度一般低于25℃,且较为恒定,可用于供暖、供水。由于浅层地热能不产生任何其他污染物,因此是一种清洁环保、安全性高、不易受气温影响、来源稳定可靠的可再生能源。目前对浅层地热能的开发利用方式主要以热泵技术为主,采用地源热泵技术开发浅层地热能。热泵技术进而发展出4个分支技术包括:地下水源地源热泵技术、土壤源地源热泵技术、地表水水源热泵技术和污水水源热泵技术[2]。通过铺设在地下的管道网络以及地表对应设备,可以在冬季寒冷时节为建筑捕获热量,夏季炎热时节为建筑释放热量,从而使建筑物减少对其他能源的依赖,达到提高建筑周遭环境的洁净程度。已有浅层地热能技术被用于现代化建筑中,如浅层地热能与地下结构的协同利用技术,主要应用在桩埋换热器中,此项技术在日本札幌城市大学建筑、南京朗诗国际街区等建筑中都有应用[3]。合肥市绿色节能建筑示范项目中,科学园小区内有720个深入地下的双“U”型地热管,通过管网水循环将恒温地热能输送至各住户内,让室内达到冬暖夏凉的效果。浅层地热能技术的应用为建筑物供给相当一部分的清洁能源,根据中国地质调查局的研究资料显示,我国每年可以开采利用的浅层地热能资源,折合约为7亿吨标准煤[4]。浅层地热能作为一种分布广泛、优势明显的可再生能源,通过热泵技术主要应用于调节室内居住环境,创造舒适的室内温度环境。随着浅层地热能技术的发展,使室内环境达到一种全面舒适的最终效果[5]。