平行线范文10篇

时间:2024-03-03 21:31:34

导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇平行线范文,还可以咨询客服老师获取更多原创文章,欢迎参考。

平行线及平行公理教案

教学建议

1、教材分析

(1)知识结构

本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.

(2)重点、难点分析

本节的重点是:平行公理及其推论.承认“经过直线外一点有且只有一条直线与这条直线平行”的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的“有且只有”的意义.

查看全文

平行线判定教案

一、教学目标

1.了解推理、证明的格式,理解判定定理的证法.

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

二、学法引导

查看全文

平行线判定教学教案

教学建议

1、教材分析

(1)知识结构:

由平行线的画法,引出平行线的判定公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.

(2)重点、难点分析:

本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习平行线的性质打下了基础.

查看全文

平行线等分线段定理教案

教学建议

1.平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.

2.平行线等分线段定理的推论

查看全文

平行线特征数学教案

§2.3平行线特征教学目标1.平行线的性质;2.运用这些性质进行简单的推理或计算;3.经历观察﹑操作﹑推理﹑交流等活动,进一步发展空间观念﹑推理能力和有条理表达的能力;4.经历探索平行线的特征的过程,掌握平行线的特征,培养学生主动探索和合作的能力。教学重点由两直线平行得到同位角相等、内错角相等、同旁内角互补。教学难点平行线的特征与直线平行的条件的综合应用。教学过程Ⅰ.创设情景,引入新课[师]上两节课我们探讨了直线平行的条件。谁来给大家总结一下:如何判定两直线平行?[生]在同一平面内不相交的直线互相平行;同平行一条直线的两条直线互相平行;同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。[师]这位同学回答得很好,其中同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。它们的共同点:两条平行线被第三条直线所截,都是已知角相等或角互补,推出两直线平行。反过来,当两直线平行,同位角﹑内错角﹑同旁内角各有什么关系呢?这节课我们来学习直线平行的特征。Ⅱ.讲授新课[板书]§2.3平行线特征[师]请大家用三角板画两条平行线被第三条直线所截。(电脑出示如下)

如图示,直线a与直线b平行,被直线c所截。(1)测量同位角∠1和∠5的大小,它们有什么关系?图中还有其他同位角吗?它们的大小关系?

[生]测量结果∠1=∠5。[生]图中还有∠2与∠6,∠3与∠7,∠4与∠8是同位角,测量它们的大小也相等。[师]现在我把∠5剪下,把它贴在∠1的上面,观察到这两个角相等。(教师动画演示)[师]通过测量和剪贴对比∠1的度数和∠5的度数相等,其它同位角也一样相等。从而得出同位角相等。[师]那么大家来说说是不是所有的同位角都相等呢?[生]不是。[师]很好。(电脑出示)如图示:∠1与∠2是同位角,但不相等。

[师]那么到底两条直线在什么情况下同位角相等?[生]两直线平行时,同位角相等.[师]很好.我们得到结论就是在两条直线平行的情况下同位角相等。那此时内错角的关系怎样?同旁内角关系怎样?下面我们再来探索:(电脑出示)

如图示,直线a与直线b平行。(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换一组平行线试试,你能得到相同的结论吗?

[生]图中有2对内错角,分别是:∠3与∠6;∠4与∠5。通过测量它们大小分别相等。[师]很好,如果我们不通过测量而用数学语言是否能证明它们是相等的吗?[生]能,直线a与直线b平行,∠3与∠7是同位角,所以∠3=∠7,又因为∠7与∠6是对顶角,相等,因此可知∠3=∠6。同样得出∠4=∠5。[师]这位同学叙述得很好,我们用简单的数学语言推证如下:(电脑出示)由此我们得到的结论是:两直线平行,内错角相等。(电脑动画剪贴过程)接下来我们来解决第(3)个问题。[生]图中有2对同旁内角。分别为∠3与∠5;∠4与∠6。它们的关系为互补。因为:直线a与直线b平行,∠2与∠6是同位角,所以∠2=∠6。又因为∠2+∠4=180o,所以得∠4+∠6=180o。同理推证∠3+∠5=180o。[师]这位同学叙述得很好,我们用简单的数学语言推证如下:(电脑出示)由此我们得到的结论是:两直线平行,同旁内角互补。[师]由此我们得到了平行线的特征:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。[板书]接下来我们做一做。(电脑出示)如图示,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4。(1)∠1,∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?

查看全文

平行线的性质教案

【教学目标】

1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;

2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

【教学重点】

平行线的性质以及应用.

【教学难点】

查看全文

七年级数学教案-平行线的性质

教学建议

1、教材分析

(1)知识结构

平行线的性质:公务员之家,全国公务员共同天地

(2)重点、难点分析

本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

查看全文

八年级数学教案平行线分线段成比例定理 (第一课时)

教学建议

知识结构

公务员之家,全国公务员共同天地

重难点分析

本节的重点是平行线分线段成比例定理.平行线分线段成比例定理是研究相似形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.

本节的难点也是平行线分线段成比例定理.平行线分线段成比例定理变式较多,学生在找对应线段时常常出现错误;另外在研究平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法研究几何问题,学生接触不多,也常常出现错误.

查看全文

八年级数学教案平行线分线段成比例定理 (第二课时)

>(第二课时)

一、教学目标公务员之家,全国公务员共同天地

1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

2.使学生掌握三角形一边平行线的判定定理.

3.已知线的成已知比的作图问题.

4.通过应用,培养识图能力和推理论证能力.

查看全文

平行线性质教教学案

教学建议

1、教材分析

(1)知识结构

平行线的性质:

(2)重点、难点分析

本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

查看全文