碾压范文10篇
时间:2024-02-29 19:02:35
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇碾压范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
碾压混凝土筑坝研究论文
1.碾压混凝土技术
碾压混凝土技术是采用类似土石方填筑施工工艺,将干硬性混凝土用振动碾压实的一种新的混凝土施工技术。在混凝土大坝施工中采用这种技术,突破了传统的混凝土大坝柱状法浇筑对大坝浇筑速度的限制,具有施工程序简化、机械化程度高、缩短工期、节省投资等优点[1]。
2.碾压混凝土施工工艺
碾压混凝土施工普遍采用了通仓薄层碾压连续上升的施工工艺。所采用的仓面平仓机、切缝机、振动碾、仓面吊及喷雾机、预埋冷却水管的材料和方法、预埋件的施工工艺等也随着碾压混凝土施工技术发展而发展,设备性能均能保证高强度连续碾压施工。
2.1摊铺及平仓、碾压工艺
碾压混凝土摊铺一般采用自卸汽车卸料,推土机或平仓机进行平仓摊铺。为减轻骨料分离,采用叠压式卸料和串链摊铺法,对局部出现的骨料分离,辅以人工散料处理,取得了较好效果。
小议碾压混凝土断裂试验研讨
摘要:本文为研究碾压混凝土断裂特性,对沙牌拱坝碾压混凝土试件进行了三点弯曲梁断裂试验和剪切断裂试验研究,获得了试件的断裂韧度KⅠC、KⅡC和断裂能GF。试验中应用光纤传感检测技术,对试件开裂进行监测,研究结果表明,经处理后的二次涂覆单模光纤对碾压混凝土试件的开裂较敏感,当试件开裂时光强突变减弱,随着裂缝开度增大光强逐渐降低,试件断裂时光纤断裂。光纤的埋设工艺是实用上需要研究解决的重要技术环节。
关键词:碾压混凝土断裂韧度断裂能光纤传感裂缝
沙牌水电站位于四川省汶川县境内岷江一级支流草坡河上,坝高132m,为目前世界上在建最高的碾压混凝土拱坝。大坝采用全断面通仓碾压施工方法,以三级配碾压混凝土为主。为了研究碾压混凝土断裂力学特性,为拱坝物理模型试验和数值计算分析提供基础资料,同时也为类似工程提供碾压混凝土断裂特性参数,对沙牌拱坝三级配碾压混凝土本体试件进行了断裂试验研究。通过三点弯曲试验及剪切断裂试验,获得了碾压混凝土试件的断裂韧度和断裂能以及荷载与加载点位移关系和荷载与缝端开口位移关系全过程曲线。研究中,通过对碾压混凝土三点弯曲试件预埋光纤,应用光纤传感检测技术,研究了光纤对碾压混凝土试件开裂的敏感性,探索光纤的光强随试件开裂及裂缝发展过程的变化关系。
1试验概况
1.1原材料基本情况水泥采用四川白花水泥厂生产的中热普硅425#水泥,粉煤灰为成都热电厂二级粉灰,砂子为人工砂,细度模数2.6~2.8,石粉含量16%~20%,石子为花岗岩人工骨料,三级配40~80mm∶20~40mm∶5~20mm=30∶40∶30,水胶比为0.506.碾压混凝土试件由国家电力公司成都勘测设计研究院科研所材料室制作,采用钢模浇筑成型,并按标准方法要求在养护室养护,龄期90d.混凝土的碾压模拟,采用附着式混凝土振动器。
1.2试件制备按照试验内容要求,具体制作了如下3组试件:(1)带切口的三点弯曲梁试件6个,编号Ⅰ1-1~Ⅰ-6,主要测试碾压混凝土的I型断裂韧度KⅠC和断裂能GF。试件尺寸为:10cm×10cm×51.5cm,L(跨)W(高)比:L/W=4,裂纹用置于试件浇筑侧面且顶角为30°的钢三角形楔模制成,裂纹长度a=5cm,其裂纹长度与试件高度之比a/w=0.5.如图1所示。(2)预埋光纤的三点弯曲梁试件4个,编号Ⅱ-1~Ⅱ-4,试件尺寸与第一组试件完全相同,只是在预制裂纹端部附近埋设了光纤,主要研究光纤对碾压混凝开裂的敏感性,探索光纤的光强与裂缝发展过程的关系。光纤型号采用2种,即康宁10/125/250单模光纤及10/125/900二次单模涂覆光纤,在埋入时又分为对光纤传感段进行了处理(即去掉光纤保护层)和未进行处理两种情况,以比较其传感效果。如图2所示。(3)带切口的剪切试件10个,主要测试碾压混凝土的Ⅱ型断裂韧度KⅡC。试件尺寸为:10cm×10cm×20cm,裂纹长度a=5cm,其中:双面剪切试件4个(实际做了8个,成功了4个),编号Ⅲ-1~Ⅲ-4,直剪试件6个,编号Ⅲ-5~Ⅲ-10,如图3和图4所示。
碾压混凝土筑坝技术研究论文
摘要:文章结合总结了我国碾压混凝土坝施工工艺,综述了该领域的研究进展及今后研究的主要内容。
关键词:碾压混凝土;碾压混凝土坝;施工工艺
1.碾压混凝土技术
碾压混凝土技术是采用类似土石方填筑施工工艺,将干硬性混凝土用振动碾压实的一种新的混凝土施工技术。在混凝土大坝施工中采用这种技术,突破了传统的混凝土大坝柱状法浇筑对大坝浇筑速度的限制,具有施工程序简化、机械化程度高、缩短工期、节省投资等优点[1]。
2.碾压混凝土施工工艺
碾压混凝土施工普遍采用了通仓薄层碾压连续上升的施工工艺。所采用的仓面平仓机、切缝机、振动碾、仓面吊及喷雾机、预埋冷却水管的材料和方法、预埋件的施工工艺等也随着碾压混凝土施工技术发展而发展,设备性能均能保证高强度连续碾压施工。
碾压混凝土研究管理论文
1碾压混凝土大坝廊道布置原则
为了灌浆、排水、监测、交通和运行维护需要,碾压混凝土大坝一般都要设置廊道。对常态混凝土大坝来说,布置廊道是很简单的事,但对碾压混凝土大坝开设廊道却制约了工程的施工进度,发挥不了碾压砼快速施工的特点。为了减少施工干扰,增大施工仓面,碾压混凝土大坝布置廊道要遵循以下原则:
1).尽量做到不设或少设,对没有灌浆要求并低于50m高的碾压混凝土大坝最好不设廊道;
2).力争做到一个廊道多种用途;
3).尽可能不设倾斜的廊道;
4).廊道断面设计尽量做到最小。
碾压混凝土快速管理论文
按照三峡工程总体施工计划安排,三期碾压混凝土围堰是三峡工程初期蓄水的控制性工程。计划导流明渠截流后,2003年元月~6月修建该围堰,其碾压混凝土总量为110万m3,要求153天时间完成,考虑不利天气和必要的施工停歇后有效施工天数仅115天。该围堰需从高程50m浇至堰顶高程140m,共上升90m,平均月上升16.9m;计划最大月浇筑强度33.59万m3,最大日浇筑强度达1.6万m3,平均月浇筑19.4万m3,日平均浇筑强度0.96万m3。为了确保该工程按期完成,三峡总公司工程建设部、长江委三峡工程设代局及葛洲坝股份有限公司三峡工程施工指挥部针对三期碾压混凝土围堰快速施工方案作了深入细致的研究。
1工程概况
三期碾压混凝土围堰为Ⅰ级临时挡水建筑物,围堰轴线位于大坝轴线上游114m处,围堰全长约580m,围堰右侧同白岩尖山坡相接,左侧与混凝土纵向围堰堰内段相连。三期碾压混凝土围堰为重力式坝型,围堰顶高程140m,顶宽8m,最大底宽107m,最大堰高115m,迎水面高程70m以上部分为直立面,高程70m以下为1∶0.3的边坡,背水面高程130m以上为直立面,高程130m至高程50m平台间为1∶0.75的边坡。坝体在高程40m、高程90m分设排水廊道,在高程107.5m设爆破拆除廊道。
三期碾压混凝土围堰分两阶段实施,第一阶段工程已于1998年年底前完成,工程内容包括右岸一期纵向围堰堰内段(已浇至140m高程)、三期碾压混凝土围堰河床段(已浇至50m高程)、三期碾压混凝土围堰岸坡2#~5#坝段(已浇至140m高程)。剩余部分为第二阶段施工内容,第二阶段修建的堰体全长380m,最大坝高90m,共110万m3碾压混凝土。
2坝体优化设计
由于三期碾压混凝土围堰工期紧、浇筑强度大,因此,结构设计时充分考虑了满足快速施工的坝体结构,最终的设计方案具有以下特点:①坝体结构简捷,细部结构少;②不设纵缝,仅设横缝和诱导缝;③同一层面混凝土标号单一;④防渗层采用变态混凝土方式,施工简便;⑤坝体排水管采用机钻孔,在廊道内施工,避免了与混凝土浇筑的施工干扰;⑥坝体廊道采用预制方式,适合于快速吊装。
河道治理工程土料填筑碾压试验探讨
[摘要]土牛河(镶白旗村至入大洋河口段)河道治理工程防洪标准为10年一遇。由蓝旗镇政府指定的镶白旗村赵家沟土料场通过颗粒分析为粉质粘土,通过击实试验确定土料最优含水率为19.4%,最大干密度为1.60g/cm3,设计压实度大于0.91,通过土料填筑碾压试验确定施工机械设备技术参数及碾压参数铺料厚度和碾压遍数。
[关键词]河道治理;土方填筑;碾压试验;粉质粘性土
1工程概况
土牛河属辽东沿黄海诸河水系,发源于凤城市边门镇谢家村马道岭。河流总长56km,流域面积615km2,平均比降1.86‰,流经3个乡镇11个行政村,于蓝旗镇镶白旗村注入大洋河,土牛河(镶白旗村至入大洋河口段)河道治理工程位于土牛河干流右岸,起始桩号1+787位于镶白旗村三组土牛河支流入河口处,终止桩号6+923位于土牛河至入大洋河口处。见图1。工程全长5136m,其中堤防加高培厚5026m,堤防拆除重建110m。防洪标准为10年一遇,堤防使用年限为20年。
2试验目的
根据施工图纸、施工组织设计计划安排及规范要求选用的压实机械、填筑料源,拟在施工现场根据不同的碾压技术参数进行不同填筑厚度的碾压试验、研究填筑工艺,通过试验达到以下目的:(1)核实填筑土料击实试验结果的合理性;(2)检查压实机具的性能是否满足施工要求;(3)选定合理的施工压实参数:铺土厚度、含水率的合理范围、压实方法和压实遍数;(4)确定有关质量控制技术要求和检测方法、现场安全控制措施;(5)运输、摊铺和碾压机械的协调配合。
碾压式土石坝质量控制要点
1工程概况
初期坝主要工程项目有:清基工程,排水盲沟工程,土石料筑坝工程,碎石反滤层工程,块石棱体排水工程,碎石排水盲体工程及坝面防护及排水工程。碾压式土石坝工程施工技术规范执行行业标准《工程测量规范》(GB50026-2007),《碾压式土石坝施工规范》(DL/T5129-2001)。
2施工技术控制要点
根据碾压式土石坝施工工艺流程,在施工过程中技术控制要点主要在于工程测量控制,由于根据土石坝施工技术规范及设计文件要求,坝体清基必须清至角砾料层,现场实际情况与设计文件难免有出入,且该设计中碎石排水盲体,块石排水棱体及坝角排水沟等结构物在设计文件中均线性及高程,设计文件中只对坝轴线及坝顶标高给出数据,其余数据要求施工单位根据现场情况确定,所以在施工前对工程测量控制非常重要,坝体清基线后整个坝体的结构物位置及高程方可确定,作为施工过程中的主要控制依据,方可根据实际情况划分施工段落循环施工。下面主要介绍本工程在施工过程中的工程测量控制要点:
2.1清基线测量控制
根据施工工序要求,在坝体填筑前需对坝基底的排水盲沟,坝角两侧的排水盲体及块石棱体进行施工,这些辅助工程完成后才能进行坝体填筑。针对工期较紧,施工工序斜街紧密的工程特点,在本次工程施工前需对整个初期坝的结构物线性及高程进行确定,这样才具备各项工程的施工条件,否则将会因为实际地质情况与设计不否造成反复返工的情况发生。为了能够保证设计文件中要求的坝基基础条件,在保证坝轴线及、坝顶高程及边坡及结构物尺寸的条件下,在清基前根据设计文件中的勘探数据计算出设计理论清基线,设计理论清基线确定之后根据设计要求在块石棱体及碎石盲体范围内延坝轴线方向用挖掘机开挖探坑,延坝轴线每100米一个断面开挖5-8个探坑,详细记录每个探坑的角砾料层高程。根据每100米处块石棱体及碎石盲体的角砾层高程按照坝轴线,坝底高程及设计文件中结构物的尺寸计算出坝体清基线位置。由于坝体较长,地质变化较大,等原因,该坝体清基线会出现折线情况非常不美观,为了保证结构物线性,高程顺畅及排水体流水方向,从而保证坝体坡度及坝角线顺畅,利用100米处块石棱体及碎石盲体中线位置作为控制点,采用EICAD软件对线性进行处理,确定坝体的块石棱体及碎石盲体的线性,根据设计文件中要求及实际情况从而计算出坝体清基线。
碾压混凝土室内管理论文
目前世界上已建和在建的碾压混凝土坝已超过200座。由于碾压混凝土坝存在众多的层(缝)面,其渗透指标是评价其质量的一个重参数,而渗透系数是评定碾压混凝土渗透性的主要渗透指标。目前测定碾压混凝土渗透系数有室内芯样渗透试验和现场压水试验两种。压水试验需在碾压混凝土坝施工现厨行,存在一定的坝面施工干扰,试段压力过大还会对坝体产生不良影响。此外,相对室内试验来说,现场压水试验更耗费人力、物力。故若能根据室内试验渗透系数来预测现场压水试验渗透系数,就可为碾压混凝土渗透性指标的获得创造简化的条件。根据国内外一些已建碾压混凝土坝室内试验和压水试验渗透系数的资料来看,压水试验渗透系数一般比室内试验渗透系数大2个数量级左右[1],但还没有建立起两者之间的相关关系[2]。本文将根据江垭大坝二级配、三级配碾压混凝土室内试验渗透系数和压水试验渗透系数的统计分析结果,来拟合碾压混凝土室内试验和压水试验渗透系数间的相关关系式。
1工程简介
江垭水利枢纽位于湖南省张家界市境内澧水支流溇水中游,距长沙322km,总库容17.41×108m3,电站装机3000MW,工程具有防洪、发电、灌溉、航运以及供水等综合作用。挡水建筑物采用碾压混凝土重力坝,最大坝高为131m.重力坝基础设置2.0m厚的三级配常态混凝土,标号为C15,除预制廊道及坝顶结构外采用全断面碾压混凝土,以三级配为主。防渗层是二级配碾压混凝土,标号为C20.其上游为变态混凝(在二级配碾压混凝土铺料中另加一定量水泥浆并用插入式振捣器振捣形成厚度为30cm的混凝土称变态混凝土),在客观上加强了防渗层。防渗层厚度依次为:高程165.0m以下采用8m,高程165.0m~高程215.0m之间采用5m,高程215.0m~高程240.0m之间采用3m.防渗层下游坝体为三级配碾压混凝土,在高程190m以下其标号为C15,在高程190m以上其标号为C10.大坝采用分层填筑碾压法施工,每30cm为一填筑碾压层,层间结合面称为层面,层面间的间隔时间在初凝时间内,层面不作任何处理,超过初凝时间,又在24h之内,则在摊铺上层混凝土之前,需刮铺2.0cm厚的砂浆;超过24h按常规施工缝处理。一般最大层间允许间隔时间为6h.每填筑碾压10层为一升程,其厚度为3m,每个升程结合面称为缝面,缝面停歇时间较长,缝面处理按常态混凝土施工缝处理。江垭大坝混凝土方量为130×104m3,其中碾压混凝土为105×104m3。
2室内试验和压水试验概况
室内渗透试验在河海大学研制的KS-50B多功能高压渗透仪上进行,试验用碾压混凝土芯样取自已浇好的江垭碾压混凝土大坝。芯样类型有二级配碾压混凝土、三级配碾压混凝土和变态混凝土3种(每种碾压混凝土均包括含层、含缝和本体芯样),芯样为150mm×150mm的圆柱体,试验步骤和试验成果详见“九·五”攻关子题报告①剔除少数渗透异常的芯样后,共获得107个有效的渗透系数数据,其中二级配碾压混凝土67个,三级配碾压混凝土22个,变态混凝土18个。
为检查碾压混凝土施工质量,中国水利水电科学研究院和湖南湘水基础施工有限公司分别于1997年和1998年对江垭碾压混凝土大坝高程158.0m以下坝体和高程160.0m~高程191.0m坝体碾压混凝土进行了现场压水试验。压水试验钻孔孔径为75mm,压水试段长为1.5m(少数试段长1.0m、2.03m、2.04m、2.4m、3.0m或6.0m)。压水试验钻孔位置和压水试验成果详见各报告②③江垭大坝现场压水试验报告(初稿).中国水利水电科学研究院结构材料所。1997年10月。江垭水利枢纽工程大坝碾压混凝土质量检查钻孔取芯及现场压水试验报告。湖南湘水基础施工有限公司,1998年5月。。在统计分析之前,对前述压水试验的透水率数据作了取舍,即二级配碾压混凝土中少量透水率大于3.0Lu以及三级配碾压混凝土中少量透水率大于4.0Lu的试段属于特殊非正常渗透,不列入统计样本中,透水率为0.0Lu的试段也不列入统计样本中。剔除上述试段后,总共有161段次的有效透水率数据,其中二级配碾压混凝土123段次,三级配碾压混凝土38段次。
碾压混凝土特性研究管理论文
高碾压混凝土坝应力状态很复杂[1],坝体混凝土绝大部分是处于三向及双向受压应力状态下,国内外多轴应力作用下普通混凝土强度研究已表明[2],普通混凝土双轴受压应力下的强度是单轴受压混凝土强度的1.25~1.60倍,三轴受压强度是单轴受压强度的3~4倍以上。因此,人们已认识到以单轴强度为依据的设计是不合理的。本文在对碾压混凝土进行双轴受压试验基础上,探讨复杂应力作用下碾压混凝土的强度、变形和破坏准则。
1试验设计
1.1试件尺寸及材料配比为了便于同普通混凝土单轴和双轴强度比较,试件采用边长为150mm的立方体,是普通混凝土试验的标准试件。胶凝材料采用425#普通硅酸盐水泥与荆门热电厂的粉煤灰,骨料采用河砂与卵石,减水剂采用木质磺酸钙。为便于比较,试验中选用两种配比的试件,具体混凝土配合比见表1.每种配比各制作了25个试件,3个用以测定28d龄期的抗压强度,3个用以测定试验龄期的抗压强度。双轴受压试验(包括单轴受压试验)的两向应力比σ2/σ1有0(单轴受压)、0.25、0.50、0.75和1.00共5种。每种应力比下的强度和应变测值均取3~4个试件的平均测值。
表1碾压混凝土配合比(单位:kg)
--------------------------------------------------------------------------------
类别
钢纤维碾压混凝土管理论文
摘要:碾压钢纤维混凝土FRCCTM(FiberreinforcedRollerCompactedConcrete)是碾压混凝土(RCC)的一项创新制作方法,其中掺入高性能的钢纤维,以减少混凝土的裂纹並构成抗弯曲的骨架。该方法能用以制作无接缝连续路面。对采用该方法实施的路面检测结果是:裂纹开口小于1mm和裂纹两边的荷载传递达到100%。FRCCTM采用低含水率(110kg/m3)和低水泥用量,即280kg/m3(相当于重量比12%),这能使钢纤维发挥最佳效果。该混凝土密度高并具有高的碾压能量:它的强度相当于常规的每立方米350公斤水泥用量的浇注式混凝土。FRCCTM用强制式搅拌机拌和、沥青混凝土摊铺机摊铺、钢轮振动压路机和轮胎压路机压实。FRCCTM的厚度一般为8至20cm,常用厚度为10至18cm。
关键词:路面水泥混凝土碾压纤维钢
1FRCCTM概述
经专利保护的FRCCTM方法(FiberreinforcedRollerCompactedConcrete)采用高强度碾压混凝土和掺入高性能的锚固钢纤维,能达到钢筋混凝土的功能。其结果是:
实现无接缝连续路面;
裂纹开口类似于连续钢筋混凝土(CRC)的开口,即小于1mm;