冷却技术范文10篇
时间:2024-02-22 12:13:09
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇冷却技术范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
新能源汽车动力电池冷却技术探索
摘要:新能源汽车的研发,可有效改善传统燃油汽车所造成的环境污染问题,通过零污染、零排放,与我国可持续发展战略相一致。基于此,文章以新能源汽车动力电池为切入点,从气体介质、液体介质、相变介质三方面,对新能源汽车动力电池冷却技术进行探讨,仅供参考。
关键词:新能源汽车;动力电池;冷却技术
新能源汽车的研发,通过电力能源取代传统燃油能源,可有效实现能源的节约,减少尾气排放,进一步符合我国节能环保工作的开展。此外,在汽车充电桩设施的布局下,可满足新能源汽车的续航需求,为电力能源与机械能源之间的转换提供基础保障。但电池装置在长时间驱动状态下,电能与热能之间的比例将呈现出负增长现象,当电池热能的产生高于热能输出时,则将加剧电力能源的损耗,缩减电池装置的使用寿命。电池冷却技术的应用,则可为电池装置进行热量管理,通过不同技术工艺、介质材料等,及时将电池装置产生的热量进行分散,以提高电池生命周期,为企业创造更大的经济利润。
一、新能源汽车动力电池概述
所谓新能源汽车动力电池,就是为新能源汽车提供动力的一种电源。就目前的市场来看,用来为新能源汽车提供动力的电源主要包括镍氢电池、铅酸电池、燃料电池和锂电池。以下是对几种常见的新能源汽车动力电池所进行的分析:
(一)镍氢电池
地铁空调系统冷却技术论文
摘要针对地铁空调冷却水系统的特殊要求,提出了喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器两种方案,简要分析了两种方案的工作原理和节能效果,计算表明,采用喷雾冷却设备替代1台600m3/h机械通风冷却塔时,在不考虑冷却塔运行费用的基础上,仅冷却塔补水水费一项每年就可节约17万元。
关键词地铁喷雾冷却冷水机组喷雾间接蒸发冷却冷凝器
0引言
近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。
目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。
1喷雾冷却技术研究成果
地铁空调系统冷却技术探究论文
摘要针对地铁空调冷却水系统的特殊要求,提出了喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器两种方案,简要分析了两种方案的工作原理和节能效果,计算表明,采用喷雾冷却设备替代1台600m3/h机械通风冷却塔时,在不考虑冷却塔运行费用的基础上,仅冷却塔补水水费一项每年就可节约17万元。
关键词地铁喷雾冷却冷水机组喷雾间接蒸发冷却冷凝器
0引言
近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。
目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。
1喷雾冷却技术研究成果
空调冷却水节水技术分析论文
摘要:针对北京地铁复八线空调循环冷却水系统运行过程中的节水问题,在理论研究的基础上,通过采用旁流式过滤技术和化学药剂相结合的方式,对天安门西站的冷却水系统进行了改造。通过不同的处理方式进行技术性和经济可行性比较,找出适合地铁冷却循环水处理的方法。
关键词:循环水旁通过滤器节水效果
一、情况概述:
北京地铁复八线西起复兴门站,东至四惠东站,全线共设13座车站,是北京地铁建设史上第一条设计安装有中央空调系统的地铁线路。车站全部采用水冷式制冷机做为站内环境温度控制。在机组运行过程中循环冷却水的损失量很大,已成为北京地铁用水量最多的设备。北京是一个缺水的大都市,市政府对节水要求很高,而且,水费又在不断的提升,使制冷系统的运行费用在地铁公司总的费用中也占据了一定的比例。
节约用水,降低运行费用是地铁运营公司的首要任务,首先我们要确定可以节约的水量在哪里?
在制冷机运行季节,正常的蒸发量和合理的飞溅损失量是无法回收的,只有通过相应的水处理技术和设备来合理的减少排污水量。也就是说:减少排污量是开展节约用水工作的重点⑴
温度控制冷却循环水节能技术研究
【摘要】根据冷却循环水系统中的人资和能源浪费问题,论文重点探讨了一种节能技术,其能够实现自动调节温度的目标,实现有效的循环,保障水资源节约到位。该类技术的核心为智能温度调节阀,这种调节阀将电动比例阀以及PID控制系统的功能集中在一起。在实际运用过程中,可以保证依照环境条件下生产负荷情况自动调节管路流量,并且不会产生相互干扰的问题。
【关键词】温度控制;冷却循环水系统;智能温度调节阀;节能技术
1引言
冷却循环水系统被合理地运用至石油以及化工等多个领域,具体的运行操作方式过于粗放,能源的实际浪费问题较为严重。因为冷却回路的换热功率和管路特性存在着明显的不同,针对冷却水以及原料的温度要求也存在着一定的差异,所以流量需求不一。若仅仅调节水泵出口阀门,仅能满足工况较差的冷却支路需要,势必造成某些回路流量较大的情况发生,直接地造成电能的浪费问题。若只调节分支管路阀门,多支路人工操作相对复杂,直接消耗了一定的人力资源,且无法保证温度的科学控制,难以实现节能的目的。针对相关问题,特别研究出智能温度控制冷却循环水装置,同时,进行了节能改造,依照冷却循环水系统节能的运行状态,论证相关技术的可行性。
2智能温度控制的基本原理
冷却循环水装置重点是通过冷却塔和循环水池等共同组合而成,循环水泵出口阀门和主管路阀门的开度设置一般是100%,以此视作检修阀加以使用。换热装置属于冷却支路,进水口管路安装智能温度调节阀之后,能够实现有效的温度调控,保证更好地满足实际需求[1]。智能温度调节阀将电动比例阀和PID控制系统的功能融合到一起,借助后者设定出原料本身需要控制的温度,温度变送器让监测之后的原料温度及时地反馈至PID控制器,确保合理地进行运算及调整,让电动比例阀的开度符合标准,促使着管路中的冷却水流量正好符合冷却原料设定的温度。冷却回路的温度依照原料的具体要求分析,需要进行独立的设定,智能温度调节阀便可完成独立控制的目标,多个冷却回路能够依照环境的基本变化和生产负荷的状态自动调节管路内部的流量,并且不会互相干扰。综上,智能温度控制就是依照实际情况科学控温,满足系统运行需求。
医院质子重离子医疗设备压力控制研究
摘要:某医院利用质子和重离子技术专业治疗肿瘤,是具有世界领先技术的专科性医院。医院的质子重离子区域对冷却水温度、压力的控制精度有极高的要求,它是直接影响到质子重离子区域医疗设备能否正常运行的关键条件。通过对某医院冷却水系统温度及压力控制的充分研究及详细设计,整套系统安全稳定运转,全面保障质子重离子区域的直线加速器等医疗设备的正常运行。
关键词:PT(质子重离子医疗);冷却水;温度;压力
上海某医院主要利用高能射线治疗肿瘤,在日常的医疗活动中,需要防护辐射,减少辐射带来的危害。如何利用智能化技术手段实时监视、自动控制、统一管理PT(质子重离子医疗)区内的各种机电设备,从而保证各种设备的正常运行,是智能化系统建设的重要任务。PT区域是全院的核心所在,PT区域配套保障系统及医院常规智能化系统分别是医院正常运营的核心部分和基础部分。医院常规智能化系统的建设和实施的目的是为医院正常开展工作提供基础保障平台。PT区域的冷却水温度压力控制系统为医院直线加速器等专业医疗设备的正常运行提供支撑和保障。如何利用智能化技术对PT区域的冷却水温度和压力做出精准控制则是本项目的技术重点和技术难点。PT区域的冷却水温度的控制要求在±0.5℃和±1℃之间,各水管接口的温度压力均有要求达到的测量值。在这个温度压力允许范围内,通过调节冷却水的阀门、泵和电热器的制热比例等各种控制手段,最终达到接口温度和水流压力的恒定。
1工艺冷却水的系统划分及技术要求
1.1一次冷却水系统
一次冷却水系统分为直线加速器系统、直线及离子源房系统、同步辐射冷却水系统三部分,其技术参数和要求见表1。需要注意的是,每个Header(冷却水前端装置)的水冷负荷已包括安全余量,实际运行时整个工艺冷却水系统的总冷负荷不大于3500kW。
小议电气设备降温的运用
变压器相变降温的应用
1.变压器冷却剂的选择在变压器的蒸发冷却技术中,冷却剂的选择是这项技术应用的关键。它既要求冷却剂具有很好的传热特性,以便将动能转变为电能,因此又要求冷却剂具有高电击穿强度以及低介质损耗等优良性能,同时必须保证无毒和不燃,还要求与发电机材料或变压器材料具有良好的相容性,一般的制冷剂都不具备这些条件的。在选择制冷剂时,除了以上要求以外外,还要充分考虑其对周围环境的影响。当今世界环境保护问题形势非常严峻,因此作为基础工业的电力能源的发展,必须把环境保护放在首要位置。目前,在全球范围内,蒸发冷却技术在电气设备上的应用,还没有一套完整的、与之相对应的热计算理论,蒸发冷却技术在电气设备上的应用还有待进一步的研究和探索。2.变压器制冷剂的选择在大型电气设备的蒸发冷却技术应用中,制冷剂的选择是又一个关键。在大型电气设备的蒸发冷却技术应用中,要求制冷剂必须具备有汽化潜热较大、介电强度较高、沸点适宜、化学性能稳定、不燃、无腐蚀,同时又不会造成环境污染。在以往,电气设备常用氟利昂系列制冷剂,它具有无毒、流动阻力小、汽化潜热大、粘度小、沸点适宜、耐击穿强度大、无腐蚀性等一系列优点,在很长一段时间里,一直是大型电气设备冷却技术应用首选的冷却介质。但是,氟利昂破坏大气臭氧层,造成“温室效应”的增强,给大气环境带来了很大的破坏,因此已经完全禁用。氟碳液体的电气性能氟利昂接近,但其缺点是沸点高,汽化潜热小。目前世界各国还在继续研究和寻找能满足环境保护,性能更加优良的冷却介质,以便使蒸发冷却技术在大型电气设备的应用得以推广。3.变压器的临界热负荷表面的散热能力是限制变压器过载运行的主要因素。当变压器的表面散热与变压器的工作热负荷两者之间不能达到平衡时,就会使绕组表面的温度升高,变压器就进入膜态沸腾区域,甚至有可能使其表面烧毁,从而出现短路故障。这对于变压器的运作来说是不能允许出现的。因此,必须计算变压器的核态沸腾可以达到的最大热流密度,也即临界热负荷,以及其绕组表面温度。正常情况下,绝缘材料的温度直接决定着变压器的寿命。采用蒸发冷却技术,能够大大的降低绕组表面以及变压器整体的温度,从而使变压器的寿命大大延长,这有利于减少变压器的损耗,对保护环境以及提高经济效益都有很好的现实意义。
蒸发冷却在发电机冷却系统中的应用
发电机在将其他能源转换成电能时,由于电损耗、机械损耗、磁损耗以及其他各种附加损耗,各个部件在工作过程中会产生大量的热量,因此,发电机冷却系统的正常运行,决定着发电机组的正常运行。从某个角度来说,冷却系统的性能决定着增大电机容量的可能性,从发电机的发展可以看出,如果没有在冷却领域取得了重大突破,那么今天的大型电机的制造几乎是不可能的。有效的冷却方式,可以大大地降低发电机各个发热部件的表面温度,因此发电机组的装机容量也得以大大的增强。发电机的发热与冷却技术,是属于工程热力学、传热学、流体力学、电磁学以及电机工程的边缘学科,是属于新兴的技术应用研究。对发电机的发热以及冷却方面的研究,对提高发电机的工作效益以及发电机的寿命都具有重要意义,因此在国际上受到广泛的重视。
对大型电气设备降温技术的研究与探索,一直是世界各国科学家的主要研究课题。蒸发冷却相变降温方式在大型电气设备的应用,能大大的提高大型电气设备的效率,相变降温方式降温显著,能保持电气设备发热表面温度均匀,并且具有安全、可靠的特性。将相变降温应用于对大型电气设备的降温,将完全改变过去主要依靠介质升温吸热的换热模式,能够有效地提高电气设备的工作效率以及单机容量。目前,我国在蒸发冷却发电机的研制方面,已经处于世界领先地位。为了充分发挥我国在相变降温研究上的优势,进一步将这一先进技术引入应用到其它电气设备中,在理论上还需要进行更深入的研究,以便为我国电气设备的设计以及改进,提供更有效的科学理论依据。
本文作者:龚宝伟工作单位:江苏师范大学科文学院
循环冷却水系统创新设计研究
摘要:针对传统空分项目循环冷却水系统普遍存在的水泵扬程偏高、流量偏大等主要问题,提出了创新设计方法。正确运用流体力学基本原理,结合空分工程的具体特点,抓住关键,从设计源头入手,合理确定水泵流量、科学计算水泵扬程等,不仅可以大幅度降低循环冷却水系统的运行能耗,还可以降低投资成本。
关键词:空分设备;循环冷却水系统;创新设计;节能降耗
大型空分设备用户是能源消耗大户,蕴藏着巨大的节能潜力,其主要关键设备的节能技术已不断取得发展,而循环冷却水系统的节能优化,空分行业对此研究较少。近年来,杭氧对空分项目的循环冷却水系统的节能从理论到实践进行了全面、系统的研究,认为空分项目的循环冷却水泵的扬程余量太大(大部分扬程为45~60m,而实际只需30~35m),余量达到29%~71%,因此仅合理配置水泵扬程,平均就有30%左右的节能空间;同时,由于冷却水流量安全系数重复考虑,造成确定的水泵流量不合理,虽然换热设备冷却水供、回水温差设计值为8~10℃,但实际运行时温差大多为4~6℃,有的更小。尽管有些企业已经实施了一些节能改造,但大多从表象出发,没有抓住本质,盲目性大,因而节能不彻底,效果欠佳。空分项目的循环冷却水系统庞大,其节能空间相当可观。循环冷却水系统的节能工作,需要创新设计,只有在正确、系统的理论指导下,从设计源头入手,才能少走弯路。
1传统循环冷却水系统设计和运行中存在的问题
1.1盲目选择水泵扬程。长期以来,空分行业以产品技术附件中的“供水压力0.4MPa,回水压力0.25MPa”等内容为依据来确定循环冷却水泵的扬程,大部分选45~60m。理论上,这个做法是一大误区,水泵扬程的确定应根据流体力学基本原理对具体的工程进行详细水力分析计算后确定。实际上,这样确定的水泵扬程余量太大,表现为:如果所配电机功率比较小,则管路上的阀门就不能完全打开(一般只能开30%),需要人为增加阻力损失才能安全运行;如果所配电机功率比较大,水泵就会在超大流量工况下运行,不仅水泵效率低,而且易产生叶轮汽蚀、噪声大、振动大等不利安全运行的问题,同时,如果超额的流量对传热影响不大,本身就是浪费。总之,盲目确定水泵扬程,既浪费投资又使运行能耗增高。1.2缺少必要的水力分析计算。除了水泵扬程的选择缺少必要的水力分析计算外,各换热设备支路也没有经过水力平衡分析设计,阻力损失小的支路实际流量大大超过设计流量,造成流量浪费;阻力损失大的支路实际流量小于设计流量,造成冷却效果不理想,这时只能通过关小阻力损失小的支路上的阀门,提高整个系统的阻力,来调节流量平衡。如果某个支路的阻力损失特别大,这种做法就更不合理。而且,如果没有经过必要的水力分析计算,循环冷却水供水干管在空冷塔位置的压力就没有数据,空冷塔常温水泵和冷却水泵的扬程确定必然盲目,要么过高,要么过低。如果循环冷却水系统变流量运行,更会出现这种情况。1.3不恰当地应用变频调速技术。先盲目增加水泵扬程或流量的余量,再增设变频调速装置,将扬程或流量降下来。这种做法不可取:不仅要增加一大笔投资,而且水泵不可能在高效区工作,变频系统本身也有一定的能量损失,附属装置增加,故障率和维修量均增大。应用变频调速技术的目的是在变工况时调节流量。一台工频泵和一台变频泵联合工作,当变频泵改变流量时,工频泵的流量朝与其相反的方向改变,不能充分发挥变频调速的作用。同时变频泵不可能频率降得很低,否则,变频泵提供的压力比工频泵的低得多,变频泵就泵送不了水。1.4对变频调速系统盲目采用压力自动控制。在市政供水和采暖空调供水系统中,当流量改变时常采用压力自动控制方式,有其具体原因。而盲目地将这种压力自动控制方式应用到空分项目,就会人为增加系统阻力,不利节能。1.5为达到运行工艺要求人为增大阻力损失。受产品技术附件中“供水压力0.45MPa,回水压力0.25MPa”等内容的影响,很多用户都认为“只要压力上去就好”“只要水回得去就好”,一旦回水压力低,水回不去,就去关小回水管阀门。这是运行中的一大误区。循环水泵供水的目的是供给换热设备冷却水流量而不是压力,应该是流量达到要求就好。对一个水力性能可调系统,流量与压力没有直接关系,而换热设备进、出口压差与该设备的流量有直接对应关系(换热设备水力性能已固定),设计和运行时希望系统阀门全开,各点的压力最低,而流量恰好满足要求。1.6不合理确定水泵流量。确定水泵流量的各环节都考虑安全系数,造成重复考虑;工程设计时没有确切的换热设备水流量作为依据,更没有相应的水阻力损失可参考,得出的总流量是个大概数,因此多数情况下所配水泵流量远大于换热设备的设计流量,水泵扬程偏高使实际运行流量进一步增大。实际运行中又认为流量大总是好的,流量大可以使压缩机级间冷却器的空气温度降得更低,可以降低压缩机的功耗。这些都造成水泵流量确定不合理,使大流量、小温差运行成为一种习惯。1.7通过关小水泵进水管阀门来调节水流量。大流量运行对水泵节能和运行不利,所以有的企业采用关小水泵进水管阀门的办法。这种方法操作快,节能效果明显。但是,增加水泵进水管阻力,很容易使叶轮汽蚀,进而使水泵运行效率降低、振动大、噪声大等。1.8不考虑实际湿球温度,冷却塔出水温度一律定为32℃如青海省西宁市的夏季空气调节室外计算湿球温度只有16.6℃,而冷却塔的进、出水温度依然设定为42、32℃。本来可以充分利用气候条件,有效降低压缩机能耗,却被不合理的设计人为抹杀。
2通过创新设计实现先天节能
建筑节能应用管理论文
摘要:本文从环境和能源两个重要的方面简要的叙述了建筑节能的必要性。概述了被动冷却技术在建筑物种的应用方式。被动冷却在建筑物中的应用方式可按照作用对象的不同分为四类:第一类主要是对建筑物屋顶进行冷却(设置蓄水屋顶、含湿材料、加盖隔热板、设置空气层等);第二类主要是对建筑物墙体进行冷却(在墙体中间设置空间层);第三类主要是对建筑物的窗、玻璃幕、阳台等透光部分进行冷却(设置遮阳、水帘等);第四类主要是对建筑物室内地板进行冷却(建地下室等)。由于建筑物得热的50%来源于建筑物的屋顶,所以重点对应用于建筑物屋顶的被动冷却技术进行了详细的描述。同时结合中国国情特点,描绘了被动冷却技术在我国建筑节能中的应用前景。
关键词:被动技术建筑节能太阳能
1.引言
在人口不断膨胀,地球环境被破坏,资源枯竭等问题困扰人类的今天,能源和环境这一课题引起全世界范围的关注。能源和环境之间有着密不可分的联系,能源的消耗会对周围环境产生一定程度的污染并且能源的有限性也使得人们越来越重视能源问题。早在70年代能源危机之后,人们对“节能”产生了一种新的道德观,这种道德观认为,节能假如不是一种生活方式,那么一定是一种生活的必需。[13]如今,节能已经成为国家政策,它已经被赋予了新的含义——能量的有效利用。但是在现代建筑设计中,人们往往较为注重建筑物的几何外观,使用了许多玻璃幕墙等外表美观的建筑形式,因而大大增加了建筑能耗。建筑能耗在总能耗中所占比例较大,并且随着现代化生活水平的提高而逐步增长。能源的消耗不仅加剧了地球矿物燃料的日益紧缺和枯竭,而且严重污染了地球环境。由表1[2、10]中可以看出,工业发达国家建筑能耗占总能耗的30%~40%,我国建筑能耗业占总能耗的10%以上。[2]因此建筑节能潜力很大。在全面深入贯彻21世纪议程和实施可持续发展战略的今天,建筑节能已成为未来建筑的发展方向和人类社会共识。
表1.建筑能耗占总能耗的比例国家
美国
叶轮注塑模具随形冷却水道设计探讨
摘要:以某企业叶轮塑件为研究对象,针对塑件腔体内部及柱位冷却难度大的问题,设计了叶轮注塑模具传统冷却水道和随形冷却水道方案,并进行了模流分析及对比分析,结果表明,与叶轮注塑模具传统冷却水道方案相比,随形冷却水道方案的塑件表面温差降低了22.1%,达到顶出温度的时间缩短了26.3%,柱位处顶出时的最大体积收缩率降低了30.6%,柱位处的翘曲变形值降低了51.7%。并且,根据随形冷却水道方案设计了叶轮注塑模具结构,进行了试模验证。对比分析与试模验证结果表明,设计的叶轮模具随形冷却水道有效地改善了塑件的冷却效果,提高了塑件的生产效率,降低了塑件的体积收缩率和翘曲变形值,从而改善了塑件质量。
关键词:注塑模具;随形冷却水道;冷却水道设计;模流分析;对比分析
注塑模具冷却系统优劣对塑件质量、成型周期的影响较大。与传统冷却系统相比,随形冷却系统的水道可以随产品轮廓形状变化而变化,因此,可以得到均匀的温度分布和冷却速率,从而实现均匀冷却,达到有效提升冷却效率、改善塑件外观质量、提高塑件尺寸精度的目的[1]。随着金属3D打印技术的应用与推广,随形冷却系统在注塑模具中的应用越来越广泛,可以解决塑件中冷却难度大的部位的有效冷却问题[2-4]。文章结合某企业叶轮塑件腔体内部及柱位冷却难度较大的问题,设计叶轮模具传统冷却水道和随形冷却水道方案,然后进行模流分析和对比分析,根据随形冷却水道方案设计叶轮注塑模具结构,在实现叶轮塑件均匀冷却的同时,降低模具的制造成本。
1产品实例分析
图1为某企业叶轮塑件3D模型。高度为100mm、最大直径为150mm、产品平均厚度为3mm,叶轮塑件腔体分为上、下2部分,腔体内的柱位需要与其他零件进行精密装配,对此处的尺寸精度及外观质量要求较高,但是,柱位处于腔体内部,在成型过程中无法有效冷却,导致冷却效率低且冷却不均匀,造成收缩不均、翘曲变形较大等缺陷。叶轮注塑模具采用一模一腔,为了便于叶轮塑件叶片成型与脱模,采用四面成型滑块机构,模具结构复杂。叶轮塑件工作时的高速转动可以产生离心力,使其内部产生较大的内应力,因此,塑件要求具有足够大的强度和刚度,但叶轮模具型腔结构复杂、成型难度较大。因此,选择具有高流动性、高抗冲、高刚性等物理特性的PP/AW564材料。
2冷却水道设计