空气范文10篇
时间:2024-02-20 23:18:16
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇空气范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
汽车空气检验情况报告
此次检验的项目为甲醛、苯、氨、总挥发性有机化合物(TVOC),检测标准参照GB/T18883-2002《室内空气质量标准》抽检,抽查的29辆汽车中只有奥迪A4\A6、本田雅阁\风范、广汽丰田凯瑞、起亚欧菲莱、mazda6等8个品牌汽车的室内空气均存在甲醛超标和TVOC含量符合标准。
29个品牌汽车抽检的检验报告中,别克君威甲醛含量不符合要求,超标0.09;别克君悦甲醛、TVOC含量不符合要求,其中甲醛超标0.05,TVOC含量超标0.4;上海大众PASSAT甲醛、TVOC含量不符合要求,其中甲醛超标0.06,TVOC含量超标0.10;福特福克斯甲醛、TVOC含量不符合要求,其中甲醛超标0.03,TVOC含量超标0.10;福特致胜甲醛含量不符合要求,超标005;东风本田思伯睿TVOC含量不符合要求,超标0.10;东风本田CRV甲醛含量不符合要求,超标0.11;标志207甲醛、TVOC含量不符合要求,其中甲醛超标0.21,TVOC含量超标0.50;荣威550甲醛、TVOC含量不符合要求,其中甲醛超标0.04,TVOC含量超标0.15;荣威750甲醛、TVOC含量不符合要求,其中甲醛超标0.06,TVOC含量超标0.60;长城炫丽甲醛含量不符合要求,超标0.06;长城酷熊甲醛含量不符合要求,超标0.07;长城哈弗甲醛含量不符合要求,超标0.01;mazda3甲醛含量不符合要求,超标0.01;mazda2甲醛含量不符合要求,超标0.01;斯柯达晶锐甲醛、TVOC含量不符合要求,其中甲醛超标0.10,TVOC含量超标0.10;比亚迪F3甲醛含量不符合要求,超标0.17;比亚迪F6甲醛、TVOC含量不符合要求,其中甲醛超标0.10,TVOC含量超标0.15。
如今,随着国家广大内需政策的不断推行和人民生活水平的提高,汽车消费日益增多,汽车内装饰五花八门,车内空气质量直接影响到消费者的人身健康,因此车内装饰受到全社会的关注。汽车内的空间封闭暴晒后,有害物质大量挥发,浓度急剧增加,如果消费者长时间停留在狭小封闭的环境中,有害物质对人身的伤害是不可预计的,特别是在开车过程中处于工作状态,精神高度集中,可能会因车内空气质量不好而导致身体不适,如疲惫、头晕、恶心等症状,从而影响到安全驾驶。
空气悬架发展论文
空气悬架从十九世纪中期诞生以来,经历了一个世纪的发展,经历了“钢板弹簧-气囊复合式悬架→被动全空气悬架→主动全空气悬架(即ECAS电控空气悬架系统)”等多种变化型式。到二十世纪五十年代才被应用在载重车、大客车、小轿车及铁道汽车上。目前国外高级大客车几乎全部使用空气悬架,重型载货车使用空气悬架的比例已达80%以上,空气悬架在轻型汽车上的应用量也在迅速上升。部分轿车也逐渐安装使用空气悬架,如美国的林肯、德国的Benz300SE和Benz600等。在一些特种车辆(如对防震要求较高的仪表车、救护车、特种军用车及要求高度调节的集装箱运输车等)上,空气悬架的使用几乎为唯一选择。而我国仍处于起步阶段,空气悬架系统只应用在一些豪华客车和少部分重型货车和挂车上。
但我国公路条件的改善为汽车空气悬架创造了基本的使用条件。2007年底,我国高速公路通车里程已接近5.36万km,高速公路里程稳居世界第二,仅次于美国,而且高速公路正以每年4000km的速度增长。按照规划,我国到2010年将建成6.5万km的高速公路,完成我国现代化交通网络的基本骨架。国内高速公路的发展对汽车的操纵稳定性、平顺性、安全性提出了更高的要求,对空气悬架国内市场产生了很大的促进作用。此外,重型汽车对路面破坏机理的研究及认识进一步加深,政府对高速公路养护的重视,限制超载逐步在国内各地受到重视,使空气悬架在重型车市场的应用也将进一步扩大,为适应高速公路运输的需要,高级客车和大型载货车都必须使用空气悬架。
我国2001~2010年《道路运输业发展规划纲要》中明确提出:2005年全国营运客车总量达到163万辆,高级客车占10%以上;营运货车达到485万辆。2010年全国营运客车总量达到220万辆,高级客车占25%以上;营运货车达到550万辆。交通部《营运客车类型划分及等级评定》JT/T325-2002标准规定2002年7月1日开始高档客车必须装用空气悬架。据交通部门有关规定,允许装用空气悬架的车辆承载量在额定轴荷的基础上增加10%。
根据交通部《营运客车类型划分及等级评定》的规定,2007年1月1日起,大型高一级客、中型高二级客车也要采用空气悬架,为我国空气悬架市场带来巨大商机。据估计,2007年我国大中型客车产量在11.5万左右(含客车非完整车辆),其中空气悬架装配量达到2.11万套。我国大中型客车空气悬架的装配率也从2005年的8%,上升到2007年的18.4%。未来三年,随着2008年北京奥运会、2010的上海世博会和广州亚运会相继举办,我国客车市场对空气悬架的需求会进一步上升。第三次修改后的交通行业标准JT/T325-2006《营运客车类型划分及等级评定》更是将独立空气悬挂配置作为客车高等级的采用标准,为独立空气悬架产品的推广使用创造了一个良好的外部环境。
空气悬架在中国会沿着欧美曾经走过的轨迹发展,其回报不可忽略。但是如果成本高昂或悬架产品使他们失去在公交车维护方面的专业优势,长途客车或公交车运营商会失去采用空气悬架的耐心。忽略中国本土技术的进口系统将增加运营商的成本,因为这样会导致昂贵的配件市场备件成本及不同系统的培训成本。中国有良好的车桥生产基地,其设计技术符合中国的具体环境。应该使用符合这些技术的空气悬架来实现悬架的优良性能和可靠性。
而目前在汽车悬架系统方面,我国除了钢板弹簧悬架的设计及应用比较成熟以外,其它的悬架技术的应用绝大部分还处于车型引进、仿制或直接购买产品阶段。悬架产品的设计开发滞后,一方面,表现在设计手段落后,计算机应力分析、动态仿真在企业中应用还较少;另一方面,没有建立一套完善的设计评价体系。在美国,由于空气悬架的普遍应用,已经成就了一批专门从事空气悬架设计、制造的悬架专业公司。我国交通行业标准《营运客车类型划分及等级评定》已经规定,高级大、中型客车要采用空气悬架,但既没有一家整车厂能独立设计出空气悬架成功地应用于整车,也没有一家悬架专业公司能够设计出并向市场提供成熟的空气悬架产品。虽然我国加入WTO之后汽车及零部件产业会全面融入全球经济一体化,汽车行业可以实现全球采购,但是不能拥有悬架设计和制造的关键技术,整车的市场竞争力肯定会受到削弱。
洁净空气方案
为加快推进大气污染防治,全面改善我市空气环境质量,根据《省人民政府关于印发省清洁空气行动方案的通知》(政发〔2010〕27号)精神,结合我市实际,制定本方案。
一、工作目标
到年,区域大气环境管理机制基本形成,全市大气污染防治能力显著增强,主要大气污染物排放总量大幅下降,酸雨、灰霾等污染明显减少,区域环境空气质量明显改善。
(一)全面完成“十二五”大气主要污染物减排目标任务。
(二)火电、建材、印染、化工、合成革、制药等重点行业企业污染物排放实现排气口与厂界“双达标”。
(三)建成覆盖全市的机动车排气检测和监管体系,机动车年审排气污染同步检测率达到100%,加油站、储油库、油罐车的油气排放达到国家相关标准。
空调空气龄计算管理论文
摘要空气龄是描述通风系统能力优劣的重要指标。目前不论是实验方法还是数值计算方法,都只能求解单个房间中的空气龄分布。而实际中的通风系统往往由多个房间、AHU和送回风管路所组成。本文讨论了计算实际空调系统中的空气龄的一般方法和特殊情况下的简化算法,提出"全程空气龄"的概念。
关键词空气龄空气品质气流组织
1引言
据调查,人们一生中约80%~90%的时间处在室内[1],因此室内环境的良好与否对人的健康至关重要。20世界70年代以来,随着世界范围的能源紧缺,节能成为建筑物设计思想的重要导向。这一时期设计的建筑物加强了密闭性,减少了空调新风量。另一方面,随着材料科学的发展,有机合成材料在室内装饰中得到了广泛应用,但这在美化房间的同时,致使挥发性有机化合物(VOC)在室内大量聚集,严重恶化了室内空气品质[2]。在这一时期设计的许多所谓"节能建筑"中,人们出现了各种不适症候,如眼睛发红、流鼻涕、嗓子疼、困倦、头痛、恶心、头晕、皮肤瘙痒等[3]。这些因建筑物使用而产生的症状,根据世界卫生组织(WHO)1983年的定义,被统称为病态建筑综合症(SBS),而导致这种综合症的建筑被称为病态建筑。病态建筑在现实中大量存在。有人分析了美国50000多个办公室之后得出结论,认为只有20%的办公室可划归到健康建筑的范畴,40%的办公室为一般健康建筑,而40%的为病态建筑,不能满足要求,其中10%的办公室条件很差,是严重的病态建筑[4]。从此,人们对室内环境有了进一步的认识,并提出了室内空气品质的概念。
室内空气品质反映了人们对室内空气的满意程度,根据美国供暖制冷工程师学会颁布的ASHRAESTANDARD62-89的定义[5]:良好的室内空气品质表现为空气中的污染物不超过公认的权威机构所确定的有害物浓度指标,并且处于这种空气中的绝大多数人(大于80%)对此没有表示不满意。这一定义除了客观评价外,也强调了人的主观评价。
大量研究表明,通风房间的空气品质取决于两个方面:通风系统的性能和室内污染物的特性[6]。美国国家职业安全与卫生研究所(NIOSH)对529个存在空气质量问题的建筑进行过评估[6],其中280座建筑物通风不合格,占调查总数的53%,而建材污染仅为21座占40%。由此可见,很大部分病态建筑是由不良的通风系统设计导致。
乡镇空气自动监测站建设探讨
摘要:乡镇地区工业水平提升、交通运输事业发展,加速了空气环境污染局面,有必要在乡镇地区设立空气自动监测站,为改善乡镇空气质量与生态水平提供依据。为此,从硬件架构与软件功能两个方面实现了乡镇空气自动监测站建设,监测站硬件架构包括空气采样模块、数据采集模块、数据处理模块、无线通信模块等部分,以各种类型传感器采集空气质量数据,预处理后传输到人机交互端与上级监测中心;监测站集成了数据可视化查询、监测设备状态管理、监测系统校对等软件功能,满足了管理人员对数据的多元化应用需求。
关键词:乡镇;空气质量;数据处理;自动监测
空气是人类赖以生存的自然资源,空气环境污染影响人类的生存质量、威胁人类身体健康。随着我国社会主义新农村建设、城乡一体化进程的加快,乡镇地区加工企业逐渐开办、车辆运输力度不断加大,为乡镇地区空气环境带来一定负担,工业较为发达的乡镇地区雾霾天气频繁出现[1]。为此,社会发展过程中乡镇地区的空气环境质量问题亟待得到关注和解决。由于城市环境质量问题的日益严峻,空气自动监测站点已经在全国范围内广泛布点,我国乡镇地区空气质量监测也应提上日程[2]。空气自动监测站建设提高了区域空气质量监测的智能化水平,无须人工获取空气质量数据,并且保障了空气质量数据采集的精准度。乡镇空气自动监测站为政府管理空气环境提供科学的决策依据,对于乡镇地区污染物排查、优化空气环境质量具有建设性意义。
1乡镇空气自动监测站的硬件设计
采集精准、真实的空气环境数据是乡镇空气自动监测站的基本要求,其次要实现监测站空气质量数据的自动化与智能化采集,消除人工测量控制污染含量的弊端。本文设计的空气自动监测站的硬件架构如图1所示。空气采样模块、数据采集模块、数据处理模块、无线通信模块、人机交互模块是空气监测站的基本构成,各环节相互配合实现乡镇地区空气的自动采样、自动处理与分析[3],将分析结果作为空气质量管理的决策依据。此外,PM2.5、PM10、臭氧、二氧化硫、氮氧化物和一氧化碳是空气自动监测站的主要监测对象与内容,涵盖了高频污染元素和气象因子。空气采样模块布局了多类型传感器采集污染物浓度、温湿度、风速等空气质量数据;监测站利用定位模块获取监测地的时空信息,利用采集的空气质量数据构建评价模型,通过无线通信模块、WiFi模块将处理后的结果和时空信息一同发送到人机交互界面和上级监测中心[4]。监测站要执行全天候不间断的自动采样与分析任务,向显示端实时传输空气质量监测结果。乡镇空气自动监测站的硬件架构如图1所示。(1)A/D数据转换模块:负责将空气采样模块获取的模拟信号转换为数字信号,为处理模块提供正确格式的空气质量数据。(2)数据处理模块:系统自动采集空气质量信息过程中难免出现数据缺失、数据冗余、数据噪声过大等问题,需要对原始数据进行预处理,提高后期数据挖掘与分析的精准度。数据处理模块基于最邻近插补法填补数据缺失部分,采用中值滤波法消除冗余数据与数据噪声,恢复控制质量数据采集的完整性。(3)空气采样模块:此模块集成了光学空气质量传感器、温湿度传感器、压力传感器、大气传感器,旨在采集全面的空气质量参数。光学空气质量传感器能够对空气中的污染因子进行采集,其原理是根据空气样品的脉冲输出情况判断污染浓度,进而将采集的光信号转换为数据信号,传输到数据采集模块[5]。大气传感器利用A/D转换模块实现气压模拟值向数字信号的转换,数字信号以无线通信模块和WiFi模块为中介传输至数据处理模块进行集中管理。(4)通信模块:包括GPRS无线通信模块和WiFi无线模块两个部分,主要负责传感器与数据采集模块之间的数据传输、数据处理模块与显示终端之间的数据传输。(5)人机交互模块:即液晶显示模块,矩阵式键盘和LCD1602液晶显示屏是此模块的核心构件,空气自动监测系统的状态信息通过人机交互界面实时显示,PM2.5、PM10、臭氧、二氧化硫、氮氧化物、一氧化碳污染因子的浓度实时呈现在界面之中,利用键盘随时调整系统的参数设置。
2空气自动监测站的软件功能设计
空气源热泵机组分析论文
摘要摘要:本文介绍了空气源热泵机组的种类和发展;分析了空气源热泵机组在全负荷和部分负荷下的性能系数;对冬季和夏季的能耗新问题进行了讨论;通过和水冷式冷水机组系统的比较,分析了空气源热泵系统的特征;并且借鉴了一些国外的空气源热泵技术,对空气源热泵机组的应用和展望进行了探索。
摘要:空气源热泵热泵系统性能系数
1.1绪论
1.1.1专题背景
随着改革开放和大规模的基本建设的发展、人们对于生活环境的要求越来越高,空调系统作为室内空气参数的主要调节装置也就相应的越来越普及。人们对空调的要求也从原1来的夏季制冷发展到冬暖夏凉,发展到对空气品质的进一步要求。而且在能源紧缺、强调可持续发展的今天,在某些大城市和非凡地区,出于环保的考虑限制使用锅炉供暖,于是电动热泵技术成了人们的首选。其中又以空气源热泵冷热水机组较为常见。
1.1.2空气源热泵机组的特征
膜法空气除湿管理论文
提要
介绍了膜除湿的优点,压缩法,真空法,膜/干燥剂复合法等除湿模式,高分子聚合物膜、分子筛膜、液膜等的特性、除湿机理及有关的研究进展,并分析了除湿膜的应用前景。
关键词:空调工程除湿膜进展
Abstract
Presentstheadvantagesofmoistureremovalbymembranetechnologyovertraditionalmethods,proceduresofcompression,vacuumandmembrane/desiccantcombination,featuresanddehumidificationmechanismofmembraneofhighpolymer,molecularscreenandliquidsubstances,andrelatedadvancementsinresearch.Anticipatestheirapplications.
Keywords:airconditioningengineering,dehumidification,membrane,advancement
空气静压主轴优化设计论文
1空气静压主轴静态性能分析
研究的高刚度卧式空气静压主轴由双向止推轴承和径向轴承组成,下面分别建立止推轴承和径向轴承的椭圆型偏微分方程形式。以MATLAB软件中的PDE工具箱为求解器,编制程序进行迭代求解空气静压主轴的承载力、刚度和流量等静特性。
2空气静压主轴的仿真优化设计
空气静压主轴的性能受到结构尺寸、供气压力、气膜间隙、节流孔孔径和数目等诸多参数的影响。在仿真计算中对部分影响主轴性能的参数做正交实验,选择最优化的空气静压主轴结构参数。在径向轴承中,径向节流器的长度、节流孔孔径及分布、气膜间隙等影响最大,在恒定气膜间隙和供气压力的情况下,分析以上参数之间的相互影响;而止推轴承中气膜间隙和节流孔孔径以及分布等影响较大。采用基于MATLAB软件PDE工具箱自主研发的程序进行数值仿真分析,并根据其他主轴的实验结果修正了仿真分析程序。为了确定空气静压主轴的结构参数,仿真采用了正交实验的理论方法,空气静压主轴的转子直径为100mm,为了提高径向的承载和刚度,径向节流器相对立式主轴较长,因此设计时径向节流器为2段,每段长度分别采用80、100和120mm3种形式,每段节流方式为双排小孔(每排12个)节流;止推轴承有效承载面外径为226mm,内径为106mm,节流方式为双排(每排12个)小孔节流;供气压力ps=0.5MPa(绝对压力);间隙为目前国内外气浮主轴普遍采用的单边10μm。在优化设计中,上述提到的参数对轴承性能(刚度、载荷)的影响是单调的,在更大程度上受到加工能力和结构尺寸的限制。空气静压主轴的优化设计主要是确定轴承的气膜间隙和节流小孔直径的最优匹配关系,优化设计的目标是根据使用情况实现刚度或承载最大。根据以上方案数值仿真的结果,得到优化的空气静压主轴的关键参数。其中,对于径向轴承,气浮间隙为10μm,供气压力为0.5MPa,长度为100mm,节流小孔直径为0.1mm,节流孔距端面距离为节流器总长度的1/4时,得到最大径向刚度171N/μm,两段为342N/μm。对于止推轴承,单边气膜间隙为10μm,节流小孔直径为0.1mm,得到最大轴向刚度723N/μm。采用以上优化后的结构参数,可以达到该套空气静压主轴的最优性能。
3实验测试
3.1实验装置
空调建筑空气计算管理论文
摘要本文分析了空调建筑空气幕实际承受的作用压差,指出目前国内现有的空气幕设计计算方法均只考虑总作用压差中的1~2项,存在严重误差。阐明空气幕总作用压差应全面计算热压、风压、机械压及平衡压,并对各压差组成项的影响因素和计算进行了讨论,提出了总作用压差的具体计算方法。
关键词空调空气幕作用压差
不设空气幕的空调建筑大门在5Pa正压作用下每平方米面积外泄的冷量相当于三百多平方米建筑所耗冷量。因此人员出入频繁的大门口要设计安装空气幕。但相当多的空调建筑空气幕实际未能起到应有作用。究其原因,从根本上说,是目前使用的空气幕设计计算方法不当造成的,其中空气幕作用压差计算不当是最主要的问题。空气幕是一种平面射流。平面射流在两侧压力不平衡时产生弯曲,偏向压力较小一侧。对空气幕而言,弯曲达到一定程度后就失去封闭作用。因而空气幕必须具有足够的抗弯能力,以抵抗相应的作用压差。因此,空气幕作用压差是空气幕设计后一个最重要的条件参数,其确定是空气幕计算的第一步,也是最重要的一步。但是国内对于空气幕总作用压差空竟由几部分组成,只计算某一部分会有多大误差,没有清楚的认识和明确的把握。目前国内广泛应用的几种计算方法,均是计算单一热压或单一风压作用下的空气幕的,虽然人们已认识到这是不合理的,但是目前还未有成熟的符合我国实际情况的方法[1],从而造成空气幕计算结果偏小的后果。为此,有必要对空调建筑的空气幕作用压差进行全面深入的分析,以便正确确定空气幕作用压差。
建筑内外空气总作用压差的形成建立在建筑物空气质量平衡的基础上。人们早已认识到它与热压Δph及风压Δpw有关。但这并非全部。对建筑物空气流动的原因进行全面分析,可知还有两项对总作用压差有重大影响的部分目前未引起足够注意。首先是建筑物特别是空调建筑内机械送风和排风量不平衡导致的室内外空气压差,称为机械压Δpm,如空调建筑保持的正压。其次是建筑物自然渗透发生变化引起的室内外空气压差变化,称为平衡压Δpe。实际建筑物内外交外压差即部作用压差Δpz是这四个因素综合作用的结果,可用其代数和表示,即
Δpz=Δpw+Δph+Δpm-Δpe时(1)
1风压Δpm