接地设计范文10篇
时间:2024-02-13 09:31:32
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇接地设计范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
电力体系接地网设计问题考虑
1关于电力接地系统
接地的实质是控制变电所发生接地短路时,故障点地电位的升高,因为接地主要是为了设备及人身的安全,起作用的是电位而不是电阻,接地电阻是衡量地网合格的一个重要参数。接地电阻,《电力设备接地设计技术规程》中对接地电阻值有具体的规定,一般不大于0.5Ω。在高土壤电阻率地区,当接地装置要求做到规定的接地电阻在技术经济上极不合理时,大接地短路电流系统接地电阻允许达到5Ω,但应采取措施,如防止高电位外引采取的电位隔离措施,验算接触电势,跨步电压等。根据规程规定,主要是以发生接地故障时,接地电位的升高不超过2000V进行控制,其次以接地电阻不大于0.5Ω和5Ω进行要求。因地层土壤特性在各层具有不同的特性,电阻率可能沿不同路径变化。当计算时选取的土壤电阻率合适,计算结果才能反映接地网的情况。我国是用四管法测量,取10米内的土壤电阻率的平均值。实际工作中对土壤电阻率的测量不够重视,往往是现场观察一下,直接从规程中选取一个参考值进行设计工作,有时进行测量也是测取场地平整前的表层土壤电阻率,不能反映该地区的实际情况。这个工作是接地装置的前期工作,必须充分注意做好。
2接地网设计问题
接地网作为变电所交直流设备接地及防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电所地网因其在安全中的重要地位,一次性建设、维护困难等特点在受到重视。其问题可以归纳为以下几点:一、土壤电阻率的测量工程土壤电阻率的测量是工程接地设计重要的第一手资料,由于受到测量设备、方法等条件的限制,土壤电阻率的测量往往不够准确。我省地处青藏高原东部,地质结构复杂,变电所占地虽然不大,但多为不均匀地质结构。现在的实测,往往只取3~4个测点,过于简单。二、长孔地网均压线与主网连接薄弱,均压线距离较长,发生接地故障时,沿均压线电压降较大,易造成二次控制电缆和设备损坏。当某一条均压线断开时,均压带的分流作用明显降低,而方孔地网的均压带纵横交错,当某条均压线断开时,对地网的分流效果影响不大。三、关于变电站内一次线对二次线的影响问题随着系统容量的增大及系统短路水平的提高,变电站内一次线对二次线的影响问题越来越突出。系统发生接地短路时,强大的人地电流经地网向地中流散,在接地网上将产生强大的电位升,使接地网上的二次设备和二次电缆呈现很高的电位,很可能造成二次电缆或二次绝缘的击穿或烧毁,这就是反击事故;人地电流可能经电缆的外皮向地中扩散,缆皮温度升高使其绝缘加速老化甚至燃烧,这两种情54•况均能引起高电位引入主控制室,使控制保护设备误动作。同时人地短路电流在地网中流散时,会在电缆芯线上产生较高的感应电压,严重影响到二次电缆的正常工作。四、国外接地装置都使用铜材,而且截面积较大。例如某电厂主变压器区域(比利时设备),在主变压器周围是TJ-150裸铜绞线;跨越主变压器基础,埋在混凝土中的是TJ-185裸铜绞线。我们设计的升压站等,全厂接地装置是钢材。这就有一个钢材被腐蚀而截面积被减少的问题。有两个问题需要讨论:一是接地装置的服务年限;二是腐蚀速度,以及采取的相应防腐措施。从广东省中试所“接地网腐蚀调查情况”看,运行10年及以上的130个35~220千伏变电所的接地装置的挖土检查,有61个接地网有不同程度的腐蚀,占46.92??.腐蚀速度为0.1~0.4?M年。在同一个变电所接地网内,园钢腐蚀的较扁钢快3~4倍。接地网的服务年限如何确定,众说不一。
我们考虑,在设计变电所、发电厂升压站时,是根据5~10年电力系统发展规划进行设计的。10年以后,电力系统发展的大了,主要设备技术性能不能满足要求了,就进行更新换代。接地网设计也按同一原则设计是比较合理的。五、在发生接地故障时,地面上可能出现很高的电位梯度,会给运行人员和设备带来危险;在土壤电阻率很高的情况下,要使接地电阻满足<0.5n的规定非常困难,即使满足此规定,也不可能排除危险,但是只要设计合理,也完全能够达到安全的目的。要考虑电位梯度带来的危险,就不可避免地要对地网上土壤表层的电位分布进行计算,以往对于等间距布置均压导体的矩形地网,均采用简化的计算公式或者经验公式来计算次边角网孔的网孔电压。但要计算地网上土壤表面任何一点的电位,特别是对于复杂形状的地网,这些公式还不太完善。
3关于电力系统接地网设计的几点建议
变电站接地网设计论文
摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220kV新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。
关键词:变电站接地网设计
随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m,5m,7m,10m等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。
1接地网优化设计的合理性
1.1改善导体的泄漏电流密度分布
面积为190m×170m的新塘变电站接地网,在导体根数相同的情况下,分别按10m等间距布置和平均10m不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距布置的接地网的泄漏电流较等间距布置的接地网分别提高了9%,14%和15%。由此可见,不等间距布置能增大中部导体的泄漏电流密度分布,相应降低了边缘导体的泄漏电流密度,使得中部导体能得到更充分的利用。
变电站接地网优化设计论文
随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m,5m,7m,10m等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。
1接地网优化设计的合理性
1.1改善导体的泄漏电流密度分布
图1是面积为190m×170m的新塘变电站接地网,在导体根数相同的情况下,分别按10m等间距布置和平均10m不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线见图2。从图中可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距布置的接地网的泄漏电流较等间距布置的接地网分别提高了9%,14%和15%。由此可见,不等间距布置能增大中部导体的泄漏电流密度分布,相应降低了边缘导体的泄漏电流密度,使得中部导体能得到更充分的利用。
1.2均匀土壤表面的电位分布
由表1的计算结果可知,不等间距布置的接地网能较大地改善表面电位分布,其最大与最小网孔电位的相对差值不超过0.7%,使各网孔电位大致相等,而等间距地网,其最大与最小网孔电位的相对差值在12.2%以上。同时不等间距地网的最大接触电势较等间距地网的最大接触电势降低了60.1%,极大地提高了接地网的安全水平。
供用电工程设计的接地保护
1小电流接地系统的保护原理和保护装置分析
1.1中性点不接地的电网系统
(1)这种电网系统是针对流经故障点的零序接电流的电路电流量总和进行分析,一般来说,零序电流在出故障后电流方向会从母线指向线路,然后经过推理找出故障,这就是此种电路的工作原理。(2)目前有效的保护方式主要是系统接地绝缘监视装置、零序无功功率保护与零序电流保护三种。系统绝缘地监视装置是指在在出故障时,开口三角处就会对出现的零序电压发出警报,有利于我们能够迅速采取措施,解决故障,但是在开口处判断具体故障线路时,比较麻烦,这也是该系统地缺陷;零序无功率保护是根据非故障线路的参数分析故障线路,实施有选择性的保护;零序电流保护则是根据故障线路的电流量远超正常线路以及电流方向不同来选择保护。像一些传统的继电保护装置就是根据这个原理来设计的。
1.2经消弧线圈接地的电网系统
这种电网接地保护系统是针对馈线路复杂对的电网,接地电压和电流分布杂散在电网各处,一旦出现故障麻烦复杂,不易判断故障线路,但出现故障不仅会影响电路稳定也会危机人身安全,所以这种系统的接地保护运用很广泛,主要采取以下这些方式如过补偿运行方式、完全补偿方式和欠补偿方式。过补偿运行方式表现为在故障电流出现时,消弧线圈通过电流叠加补偿故障的线路的电流,使之恢复正常水平,但是此种方式并不能完全补偿故障线路电流,所以这种方式已很少使用;完全补偿方式是目前比较常用的一种方式,包括以下两种行为,一是随动式完全补偿方式,在线路运行时,监测电路系统会对电路电流自动调节,但是由于阻性接地的分量会使得接地电流增加以及安装的弧线圈也会分担电流,所以这种接地保护系统所起的作用并不是很理想。二是主动式完全补偿,这种方式会将接地电流很快的调节到完全补偿,而在不会补偿远离谐振点,这样就会使得它具有在接地同时进行调节电感电流的功能,这样使得完全补偿功能的发挥,虽然这种方式还是存在一些问题,但目前来说是一种比较合适的选择。
2在供用电工程设计中接地保护系统的调试注意事项和故障分析
低阻抗接地网设计分析论文
摘要:文中介绍了接地系统的作用,分析了独立接地系统和共用接地系统的性能和特点,阐述了接地电阻的构成及施工和降阻方法。简介了接地装置的施工接地电阻测量方法及测量注意事项。
关键词:接地系统构成性能施工测量
1.概述
接地系统是影响用电系统稳定、安全、可靠运行的一个重要环节,为了用电设备系统稳定的工作,须有一个接地参考点。至于如何接地,采用何种接地方式较好、较正确,人们看法不一,国内有关规程也不够明确和统一,国外用电设备厂商对接地系统的要求也不尽相同,但对用电设备必须可靠接地的认识是统一的。接地系统基本分为两种形式,一是有按需要接地系统的功能而单独设计的各自的专用接地系统,二是将各种功能的接地系统联在一起组成一个公用接地系统。
2.独立接地系统
将系统的直流地(逻辑地)与交流工作地,安全保护地和防雷地、供电系统地相互独立。为了防止雷击时反击到其它接地系统,还规定了它们相互之间应保持的安全距离。采用独立接地方式的目的,是为了保证相互不干扰,当出现雷电流时,仅经防雷接地点流入大地,使之与其它部分隔离起来。有关规程提到若把直流地(逻辑地)防雷地分离时,其间距离应相距15米左右。在不受环境条件限制的情况下,采用专用接地系统也是可取的方案,因这可避免地线之间相互干扰和反击。
电子厂房接地设计研究论文
随着电子技术的发展,电子产品越来越多地应用于各类生产生活领域。与之相适应,电子生产厂房的修建也与日俱增。其中的接地技术较常规的建筑接地种类繁多,涉及面广。
本文以某电子储存类产品的生产厂房的设计为例,对电子厂房的接地做一探讨。该厂房的生产设备有很多是微电子设备,这些设备的特点是工作信号电压很低(一般只有10伏左右),抗干扰能力差,对防静电的要求高,车间内有IT信息中心及网络生产管理,所以接地在该项目中具有重要的作用。其接地系统根据用途具体可分为电源系统接地、电气保护接地、防静电接地、信息系统的接地、电子设备接地、防雷接地几个种类。
1、电源系统接地:
该工程由两栋三层主厂房、办公楼和食堂等附属建筑物组成,虽然建筑面积达数万平方米,但建筑群体相对集中,所以在设计中优先考虑TN-S系统。变压器中性点接地,系统的保护线与中性线完全分开,这种方式对供电、保护、经济合理性等均十分有利,其选择原则与常规建筑一致,这里不再赘述。对于传达室等距离主体建筑较远的零星建筑单体,采用带PE线的五芯电力电缆予以供电,距离超过50米以上的建筑须按规范要求重复接地。
2、电气保护接地采用TN-S系统时,电气设备不带电的金属外露部分与电力网的接地点采用直接电气连接。
当带电相线因绝缘损坏碰设备外壳时,通过设备外壳构成该故障相对地线的单相短路。利用很大的短路电流,使线路上的保护装置(如熔断器、低压断路器等)迅速动作,切断电路,从而消除人身触电危险。在电子生产厂房中,生产流水线上设备密集,且多为金属外壳的用电设备。若保护接地不到位或不符合要求,在发生接地故障时,很容易引起工作人员触电危险。因此,保护接地问题不容忽视,无论在设计过程还是施工过程中,都应切实地把保护接地落实到位。应进行保护接地的物体主要包括:变压器、高压开关柜、配电柜、控制屏等的金属框架或外壳;固定式、携带式及移动式用电器具的金属外壳;电力线路的金属保护管或桥架、接线盒外壳,铠装电缆外皮等。保护接地的连接线可采用扁钢或铜导线,要求形成可靠的电气通路。等电位连接是各类建筑物电气设计中一项不可缺少的工作。等电位连接有总等电位连接和局部等电位连接两种。所谓总等电位连接是在建筑物的电源进户处将PE干线、接地干接、总水管、总煤气管、采暖和空调立管等相连接,从而使以上部分处于同一电位。总等电位连接是一个建筑物或电气装置在采用切断故障电路防人身触电措施中必须设置的。所谓局部等电位连接则是在某一局部范围内将上述管道构件作再次相同连接,它作为总等电位连接的补充,用以进一步提高用电安全水平。在电子厂房内,各个部位的电位都相等,可以保证建筑物内不会产生反击电压,同时可以降低雷电电磁脉冲产生的干扰。
电子厂房接地设计探究论文
1、电源系统接地:
该工程由两栋三层主厂房、办公楼和食堂等附属建筑物组成,虽然建筑面积达数万平方米,但建筑群体相对集中,所以在设计中优先考虑TN-S系统。变压器中性点接地,系统的保护线与中性线完全分开,这种方式对供电、保护、经济合理性等均十分有利,其选择原则与常规建筑一致,这里不再赘述。对于传达室等距离主体建筑较远的零星建筑单体,采用带PE线的五芯电力电缆予以供电,距离超过50米以上的建筑须按规范要求重复接地。
2、电气保护接地采用TN-S系统时,电气设备不带电的金属外露部分与电力网的接地点采用直接电气连接。
当带电相线因绝缘损坏碰设备外壳时,通过设备外壳构成该故障相对地线的单相短路。利用很大的短路电流,使线路上的保护装置(如熔断器、低压断路器等)迅速动作,切断电路,从而消除人身触电危险。在电子生产厂房中,生产流水线上设备密集,且多为金属外壳的用电设备。若保护接地不到位或不符合要求,在发生接地故障时,很容易引起工作人员触电危险。因此,保护接地问题不容忽视,无论在设计过程还是施工过程中,都应切实地把保护接地落实到位。应进行保护接地的物体主要包括:变压器、高压开关柜、配电柜、控制屏等的金属框架或外壳;固定式、携带式及移动式用电器具的金属外壳;电力线路的金属保护管或桥架、接线盒外壳,铠装电缆外皮等。保护接地的连接线可采用扁钢或铜导线,要求形成可靠的电气通路。等电位连接是各类建筑物电气设计中一项不可缺少的工作。等电位连接有总等电位连接和局部等电位连接两种。所谓总等电位连接是在建筑物的电源进户处将PE干线、接地干接、总水管、总煤气管、采暖和空调立管等相连接,从而使以上部分处于同一电位。总等电位连接是一个建筑物或电气装置在采用切断故障电路防人身触电措施中必须设置的。所谓局部等电位连接则是在某一局部范围内将上述管道构件作再次相同连接,它作为总等电位连接的补充,用以进一步提高用电安全水平。在电子厂房内,各个部位的电位都相等,可以保证建筑物内不会产生反击电压,同时可以降低雷电电磁脉冲产生的干扰。
3、防静电接地:
>静电主要由不同物质相互摩擦而产生,在电子厂房生产过程中,静电所造成的危害是多方面的。首先,该工程中很多设备及仪器对静电电压比较敏感,静电会影响其正常工作甚至出现错误;其次,由静电产生的高电压会引起人身触电;另外,当静电严重时可能会引起火花放电,严重的会造成火灾事故。
电子厂房接地设计分析论文
简介:随着电子技术的发展,电子产品越来越多地应用于各类生产生活领域。与之相适应,电子生产厂房的修建也与日俱增。其中的接地技术较常规的建筑接地种类繁多,涉及面广。
关键字:电子厂房接地设计
随着电子技术的发展,电子产品越来越多地应用于各类生产生活领域。与之相适应,电子生产厂房的修建也与日俱增。其中的接地技术较常规的建筑接地种类繁多,涉及面广。
本文以某电子储存类产品的生产厂房的设计为例,对电子厂房的接地做一探讨。该厂房的生产设备有很多是微电子设备,这些设备的特点是工作信号电压很低(一般只有10伏左右),抗干扰能力差,对防静电的要求高,车间内有IT信息中心及网络生产管理,所以接地在该项目中具有重要的作用。其接地系统根据用途具体可分为电源系统接地、电气保护接地、防静电接地、信息系统的接地、电子设备接地、防雷接地几个种类。
1、电源系统接地:该工程由两栋三层主厂房、办公楼和食堂等附属建筑物组成,虽然建筑面积达数万平方米,但建筑群体相对集中,所以在设计中优先考虑TN-S系统。变压器中性点接地,系统的保护线与中性线完全分开,这种方式对供电、保护、经济合理性等均十分有利,其选择原则与常规建筑一致,这里不再赘述。对于传达室等距离主体建筑较远的零星建筑单体,采用带PE线的五芯电力电缆予以供电,距离超过50米以上的建筑须按规范要求重复接地。
2、电气保护接地采用TN-S系统时,电气设备不带电的金属外露部分与电力网的接地点采用直接电气连接。当带电相线因绝缘损坏碰设备外壳时,通过设备外壳构成该故障相对地线的单相短路。利用很大的短路电流,使线路上的保护装置(如熔断器、低压断路器等)迅速动作,切断电路,从而消除人身触电危险。在电子生产厂房中,生产流水线上设备密集,且多为金属外壳的用电设备。若保护接地不到位或不符合要求,在发生接地故障时,很容易引起工作人员触电危险。因此,保护接地问题不容忽视,无论在设计过程还是施工过程中,都应切实地把保护接地落实到位。应进行保护接地的物体主要包括:变压器、高压开关柜、配电柜、控制屏等的金属框架或外壳;固定式、携带式及移动式用电器具的金属外壳;电力线路的金属保护管或桥架、接线盒外壳,铠装电缆外皮等。保护接地的连接线可采用扁钢或铜导线,要求形成可靠的电气通路。等电位连接是各类建筑物电气设计中一项不可缺少的工作。等电位连接有总等电位连接和局部等电位连接两种。所谓总等电位连接是在建筑物的电源进户处将PE干线、接地干接、总水管、总煤气管、采暖和空调立管等相连接,从而使以上部分处于同一电位。总等电位连接是一个建筑物或电气装置在采用切断故障电路防人身触电措施中必须设置的。所谓局部等电位连接则是在某一局部范围内将上述管道构件作再次相同连接,它作为总等电位连接的补充,用以进一步提高用电安全水平。在电子厂房内,各个部位的电位都相等,可以保证建筑物内不会产生反击电压,同时可以降低雷电电磁脉冲产生的干扰。
低阻抗接地网设计分析论文
1.概述
接地系统是影响用电系统稳定、安全、可靠运行的一个重要环节,为了用电设备系统稳定的工作,须有一个接地参考点。至于如何接地,采用何种接地方式较好、较正确,人们看法不一,国内有关规程也不够明确和统一,国外用电设备厂商对接地系统的要求也不尽相同,但对用电设备必须可靠接地的认识是统一的。接地系统基本分为两种形式,一是有按需要接地系统的功能而单独设计的各自的专用接地系统,二是将各种功能的接地系统联在一起组成一个公用接地系统。
2.独立接地系统
将系统的直流地(逻辑地)与交流工作地,安全保护地和防雷地、供电系统地相互独立。为了防止雷击时反击到其它接地系统,还规定了它们相互之间应保持的安全距离。采用独立接地方式的目的,是为了保证相互不干扰,当出现雷电流时,仅经防雷接地点流入大地,使之与其它部分隔离起来。有关规程提到若把直流地(逻辑地)防雷地分离时,其间距离应相距15米左右。在不受环境条件限制的情况下,采用专用接地系统也是可取的方案,因这可避免地线之间相互干扰和反击。
3.共用接地系统
建筑物为钢筋混凝土结构时,钢筋主筋实际上已成为雷电流的下引线,在这种情况下要和防雷、安全、工作三类接地系统分开,实际上遇到较大困难,不同接地之间保持安全距离很难满足,接地线之间还会存在电位差,易引起放电,损害设备和危及人身安全。考虑到独立专用接地系统存在实际困难,现在已趋向于采用防雷、安全、工作三种接地连接在一起的接地方式,称为共用接地系统。在IEC标准和lTU相关的标准中均不提单独接地,国标也倾向推荐共用接地系统。共用接地系统容易均衡建筑物内各部分的电位,降低接触电压和跨步电压,排除在不同金属部件之间产生闪络的可能,接地电阻更小。
独家原创:配电变压器优化接地工程设计论文
对于配变的接地方式,电力设备接地设计技术规程(SDJ8279)第21条规定:低压电力设备接地装置的接地电阻,不宜超过4Ω。架空配电线路及设备运行规程(SD292288)第5.0.8和5.0.9条规定:总容量在100kVA及以上的变压器其接地装置的接地电阻不应大于4Ω,每个重复接地装置的接地电阻不应大于10Ω;总容量在100kVA以下的变压器,其接地装置的接地电阻不应大于10Ω,且重复接地不应少于3处。中性点直接接地的低压电力网中的中性线,应在电源点接地,在配电线路的干线和分干线(支线)终端处应重复接地;在线路引入车间或大型建筑物处,也应将中性线重复接地。农村低压电力技术规程(DL/T499—2001)第11.4.2条规定:配电变压器低压侧中性点的工作接地电阻,一般不大于4Ω,100kVA以下配变可不大于10Ω,并要求在一年四季中均符合这个要求。同时,第3.4.1条规定:城镇、电力用户宜采用TN-C系统。由此可见,国家和电力部门都十分重视配变的接地问题。
2变压器优化接地的要求
我国低压配电系统绝大多数是中性点接地系统。在这种系统中,配电变压器高压侧避雷器接地端、低压绕组中性点和配电变压器外壳共用一套接地装置。相关规程规定:当配电变压器容量为100kV•A及以下时,接地电阻不得大于10
Ω;当配电变压器容量大于100kV•A时,接地电阻不得大于4Ω。配电变压器接地不良或接地电阻超过上述规定值,虽然危险,但由于它不像相线那样,一有故障就会造成停电,因而常常被人们忽视。为了保证设备和人身安全,对配电变压器接地装置不应忽视,而应该认真对待。
2.1接地装置对土壤的要求
接地装置要敷设在低电阻率的区域里。因为接地装置的接地电阻和土壤电阻率近似成正比关系。相同的接地装置,土壤电阻率越小,则接地电阻越小;反之,则接地电阻越大。在选择配电变压器安装位置时,除考虑靠近负载中心外,还应尽可