交流电机范文10篇
时间:2024-02-10 14:56:55
导语:这里是公务员之家根据多年的文秘经验,为你推荐的十篇交流电机范文,还可以咨询客服老师获取更多原创文章,欢迎参考。
交流电机变频调速器应用分析论文
【论文关键词】:容量选择;传动系统;最高频率;传动比;制动电阻
【论文摘要】:对变频调速器在实践应用中容量的正确选择、传动系统的优化设计以及外接制动电阻等方面的问题,总结了一些经验。
随着电力技术的迅速发展,交流电机变频调速技术取得了突破性的进步,进入了普及应用阶段。在我国,变频调速器也正越来越广泛地被采用,与此同是地,如何正确地选好、用好已成为广大用户十分突出的问题了。
1.关于容量选择
在变频调速器的说明书中,为了帮助用户选择容量,都有"配用电动机容量"一栏,然而,这一栏的含义却不够确切,常导致变频器的误选。
各种生产机械中,电动机的容量主是根据发热原则来选定的。就是说,在电动机带得动的前提下,只要其温升在允许范围内,短时间的过载是允许的。电动机的过载能力一般定为额定转矩的1.8-2.2倍。电动机的温升,所谓"短时间"至少也在十几分钟以上。而变频调速器的过载能力为:150%,l分钟。这个指标,对电动机来说,只有在起动过程才有意义,在运行过程中,实际上是不允许载。
交流电机变频调速器应用分析论文
【论文关键词】:容量选择;传动系统;最高频率;传动比;制动电阻
【论文摘要】:对变频调速器在实践应用中容量的正确选择、传动系统的优化设计以及外接制动电阻等方面的问题,总结了一些经验。
随着电力技术的迅速发展,交流电机变频调速技术取得了突破性的进步,进入了普及应用阶段。在我国,变频调速器也正越来越广泛地被采用,与此同是地,如何正确地选好、用好已成为广大用户十分突出的问题了。
1.关于容量选择
在变频调速器的说明书中,为了帮助用户选择容量,都有"配用电动机容量"一栏,然而,这一栏的含义却不够确切,常导致变频器的误选。
各种生产机械中,电动机的容量主是根据发热原则来选定的。就是说,在电动机带得动的前提下,只要其温升在允许范围内,短时间的过载是允许的。电动机的过载能力一般定为额定转矩的1.8-2.2倍。电动机的温升,所谓"短时间"至少也在十几分钟以上。而变频调速器的过载能力为:150%,l分钟。这个指标,对电动机来说,只有在起动过程才有意义,在运行过程中,实际上是不允许载。
交流电机转速调整器研究管理论文
摘要:分析了由MCU和双向晶闸管开关来控制通用电动机转速的原理,提出了一种提高电动机效率的设计方案,给出了该实现方案的硬件电路和软件程序框图,同时给出了实验仿真的结果。
关键词:微控制器;晶闸管开关;电路板
1引言
在日常生产与生活中,大量电动机都以规定的速度和功率去拖动各种机械。而在军事上,很多应用往往要求旋转天线在各种条件下都要保持匀速转动,这就要求在不同的情况下,电动机能相应调整工作速度,以保持恒定的速度。要实现这一功能,最常用的方法是对电动机的转速进行调节。改变直流电动机的电枢或交流电动机的定子电压,都可以在一定的范围里改变转速;也可用双向晶闸管交流开关或直接选用模拟控制的通用电动机驱动器来取代笨重的电动机、发电机组以及饱和电抗器。本文介绍一个直接由110/240V电源供电的通用电动机驱动电路和一个MCU以及一个双向晶闸管开关来实现控速的设计方法。其中单片机选用Microchip公司的PIC12F675。与用户接口的方式有三种一个是接触传感器;一个是按钮;一个是电位器。笔者在该仿真实验中采用的是电位器。辅助电源从电源电压中变压整流获得。
2设计方案和结构
2.1电路结构
交流传动控制系统设计研究
摘要:本文主要介绍交流电机的控制使用,主要因为交流电机已经取代以前直流电机的重要作用,因此进一步研究交流调速控制,对于我们以后工业发展和节能减排等有着十分现实的意义。
关键词:STM32;交流电机;SVPWM
1绪论
如今生产生活中交流电机的使用已经远远超过了直流电机,而在交流电机中由于转子旋转的速度与旋转磁场的转速不同,分成了异步电动机和同步步电动机。前者由于负载的转速与输入电网的频率之比可以不为定值。[1]它与后者相比内部结构简单,制造、使用和维护方便、运行可靠,而且质量轻,花费成本低,因此我们把交流异步电动机作为研究对象。[2]
2系统硬件总体设计
系统的主电路采用交-直-交变压型电路。该系统主电路主要由整流,滤波以及IPM等部分组成。本文选择的控制部分也是当今使用最为广泛的STM32F1系列单片机,可用来处理反馈环节返回来的变量以及产生精确地SVPWM波来驱动IPM模块,总体框图如图1所示。2.1电流采样电路。它的主要作用是采集系统运行时的电流,通过该模块处理后返回到MCU中,电流采样电路如图2所示。2.2测速模块。本系统中我们采用的是M法,我们将它的A和B两个引脚同时进行计数。由于它每一次旋转都可以产生产生1024个脉冲。两个引脚同时计数可以让我们的结果更加精确。将这两个引脚的输入到MCU的IO口中进行处理。2.3主电路设计。它是来执行变频调速的关键环节。该电路采用的是交-直-交变压变频。如图中间经过的是直流,它采用的是大电容来进行滤波操作。本系统采用的整流器是二极管,最右侧输出的波形接近正弦波。2.4IPM选择。在选用它时,我们首先要考虑的是系统能正常运行。额定电压值计算:Un1.5Ud=1.5×540=810V额定电流值计算:In=(1.2~2)*λ*Im=(1.2~2)×1.5×槡2×8=20.34~33.9A该式中的为我们通常所说的安全裕量。λ为所有电机的过载倍数,最终选择的IPM型号为PM50RSA120。该型号的最大耐压为1200V,电流为50A。[3]
电机与拖动基础模块化教学方法分析
【摘要】《电机与拖动基础》课程是自动化专业的专业基础课程之一,是一门集理论与实践于一身的课程。这门课程需要电磁学、微积分、电工技术等多门学科为基础,内容抽象,对理论与实践均要求较高,是一门既难教又难学的课程。本文从本校教学实际出发,分析《电机与拖动基础》课程教学过程中存在的问题,对教学内容、教学方法以及实践应用等方面进行改革,开展“模块化”教学,取得了良好的效果。
【关键词】电机与拖动基础;教学改革;模块化教学;任务驱动
近年来,培养创新型人才已成为各个高校培养人才的方向,各个专业增开涉及到新技术、新理论的各类课程,多门专业基础课和专业课程的学时被压缩,学时少、任务重是日常教学中必须解决的矛盾。如何在有限的学时内,高质量地教,高质量地学,是当前教学过程必须解决的问题。
1教学中面临的问题
《电机与拖动基础》在自动化专业的课程中,是一门既难学又难教的课程,具有以下几个特点:1.1内容多而学时少。《电机与拖动基础》课程内容包含电机学、电力拖动两方面内容,概念繁多,公式种类纷繁复杂。本校教学学时为40学时,包含8个学时的实验。如何更好地利用这40个学时,使学生对电机、电力拖动这两大模块知识具有基础理论与基本的实践操作技能,是这门课教学过程中急需解决的问题。1.2内容抽象而实践性强。《电机与拖动机车》课程是以《高等数学》中的微积分运算、《大学物理》中的电磁学、《电路理论》中的基本概念、元件等知识点为基础。需要学生对上述知识点熟练掌握,理解透彻,否则会对本课程的学习产生畏难情绪,甚至影响学习效果。实践上包含电机的启动、工作特性与机械特性的测定、调速与制动等电机运行的几个环节,需要了解电机结构、掌握电机工作原理以及运行性能,才能够更好地理解实验目的、分析实验结果。
2《电机与拖动基础》模块化划分
电机绝缘结构分析论文
1直流电机电枢绝缘结构
直流电机电枢绝缘结构,是由绕组绝缘、换向器绝缘、支架绝缘、扎钢丝绝缘和层间绝缘等组成。由于采用的电枢绕组的型式,电压等级和绑扎材料不同,电枢绝缘结构某些地方有所变化。
1.1电枢绕组绝缘电枢绕组绝缘结构随绕组结构型式不同而有所区别。为了提高防潮性能,大型直流电机电枢绕组一般采用连续式绝缘。
1.1.1匝间绝缘作用是绝缘同一线圈中的相邻元件,只承受片间电压。大型直流电机匝间绝缘一般采用裸铜线外半叠包一层0.1毫米云母带,或直接采用高强度漆包双玻璃丝包线。中、小型电机一般采用双玻璃丝包线即可。在F级薄膜绝缘大型电机可采用0.05毫米薄膜半叠包一层并将薄膜“烧结”在导体上,或加包一层玻璃丝带。中、小型电机半叠包0.05毫米薄膜一层或将薄膜“烧结”在导体上。
1.1.2对地绝缘主绝缘,承受线圈对铁心间的全电压。1000伏级大型电机:0.14毫米醇酸云母带半叠绕三层。660伏级中型电机:0.14毫米醇酸云母带半叠绕二层(连续式绝缘)或0.2毫米云母箔卷包2层(套筒式绝缘)。F级薄膜大型电机:0.05毫米聚酰亚胺薄膜半叠绕四层。中、小型F级或H级电机:0.05毫米聚酰亚胺薄膜半叠绕2~3层。
1.1.3保护布带主要保护主绝缘免受机械损伤。一般B级绝缘电机采用0.1毫米玻璃丝带半叠绕或平绕一层。F级薄膜绝缘一般不用保护布带,有时为可靠起见,也用0.1毫米玻璃丝带半叠绕一层。
公铁两用牵引车电气设计探讨
【摘要】公铁两用牵引车是可以在铁路和公路行驶的车辆,主要用于对列车在库房、工位、移车台之间的铁路线路上牵引作业,同时可在基地道路或检修库房普通地面上运行。系统采用电传动方式,以蓄电池为动力电器设计。电器系统具有节能环保,工作噪音不大于60dB,维护量低,传动效率高,采用先进可靠的交流电机,闭环控制系统、无级变速驱动,确保运行安全可靠。
【关键字】驱动器;控制器;电池管理系统
一、设计背景
公铁两用车的电气控制部分主要组成如图1所示:电机驱动控制器:电机驱动控制器是整车的核心部件,控制器接收来自操纵台的的各种主令信号(主令信号主要包括加速、制动、启动、紧急制动等指令),以及各传感器传送的检测信号,通过CAN总线通讯向变频器发送转矩、转速指令控制电机。通过CAN总线把车速、电池电量等信息在显示器上显示。变频器:两用车配备的变频器用于控制牵引电机,对电机采取转矩控制。变频器具有丰富的保护功能,包括过流保护、过压保护和过热保护等,保证驱动系统的安全可靠运行。主要控制对象为驱动电机和油泵电机,也是整车最关键部分,下面分别介绍目前该车的电机主要参数。1.牵引电机。牵引电机选用意大利SME公司生产的MC225型交流电机,该交流电机额定电压48V,额定功率16kW,额定转矩150Nm,额定转速1500r/min,峰值功率可达到47.8kW,峰值转矩314Nm,最高转速4500r/min。牵引电机是鼠笼转子交流电机,寿命长,不需要维护;电机具有0速输出最大转矩的能力,从而获得最大起动转矩。由变频器控制主电机,对电机的控制方式有转矩控制和转速控制2种,可以根据指令切换;回馈制动功能将电机制动的能量给电池充电,提高了电能利用率,延长电池一次充电的工作时间;变频器具有丰富的保护功能,包括过流保护、过压保护和过热保护等,保证驱动系统安全可靠运行。2.油泵电机。除牵引电机外,系统中还有一个泵电机用来驱动油泵。泵电机采用意大利SME公司生产的MT719B2型,额定功率10kW,额定转速1500rpm,可以为导轮、助力转向器和刹车油泵提供动力。
二、设计思路
通过对被控制对象的分析,需要实现一套大扭矩的电动车。电气系统部分的核心在于驱动电机控制,需要实现转矩控制,调频调速,制动控制,能量回收等,驱动电机为交流异步电机。纵观市场,此类控制器也比较多,应用广泛,如叉车、牵引车、代步车、景区摆渡车等类电动车,技术比较成熟,通过系统集成方式完成一套控制系统设计。
电机绝缘结构分析论文
1直流电机电枢绝缘结构
直流电机电枢绝缘结构,是由绕组绝缘、换向器绝缘、支架绝缘、扎钢丝绝缘和层间绝缘等组成。由于采用的电枢绕组的型式,电压等级和绑扎材料不同,电枢绝缘结构某些地方有所变化。
1.1电枢绕组绝缘电枢绕组绝缘结构随绕组结构型式不同而有所区别。为了提高防潮性能,大型直流电机电枢绕组一般采用连续式绝缘。
1.1.1匝间绝缘作用是绝缘同一线圈中的相邻元件,只承受片间电压。大型直流电机匝间绝缘一般采用裸铜线外半叠包一层0.1毫米云母带,或直接采用高强度漆包双玻璃丝包线。中、小型电机一般采用双玻璃丝包线即可。在F级薄膜绝缘大型电机可采用0.05毫米薄膜半叠包一层并将薄膜“烧结”在导体上,或加包一层玻璃丝带。中、小型电机半叠包0.05毫米薄膜一层或将薄膜“烧结”在导体上。
1.1.2对地绝缘主绝缘,承受线圈对铁心间的全电压。1000伏级大型电机:0.14毫米醇酸云母带半叠绕三层。660伏级中型电机:0.14毫米醇酸云母带半叠绕二层(连续式绝缘)或0.2毫米云母箔卷包2层(套筒式绝缘)。F级薄膜大型电机:0.05毫米聚酰亚胺薄膜半叠绕四层。中、小型F级或H级电机:0.05毫米聚酰亚胺薄膜半叠绕2~3层。
1.1.3保护布带主要保护主绝缘免受机械损伤。一般B级绝缘电机采用0.1毫米玻璃丝带半叠绕或平绕一层。F级薄膜绝缘一般不用保护布带,有时为可靠起见,也用0.1毫米玻璃丝带半叠绕一层。
电力驱动逆变器系统管理论文
摘要:介绍了采用实际控制器输出的PWM开关逻辑信号定义正、负半桥开关函数,建立逆变器的Simulink实时模型。该模型既可实现电力驱动实时仿真系统中逆变器与电机模型的解耦,又可以确定逆变器开关死区时间。还给出了基于dSPACE实时仿真环境的逆变器-异步电机实时仿真系统的实现方法,针对开关频率为1kHz的逆变器,采样周期为11μs的实时仿真与仿真步长为100ns的离线仿真结果无明显差别。
关键词:逆变器开关函数实时仿真
在交通和某些工业领域中的电力驱动系统的研制过程中,直接使用实际电机系统对新的控制器进行测试,实现起来比较困难,而且费用较高。因此,需要介于离线仿真和实机试验之间的逆变器-交流电机实时仿真器,与实际控制器硬件相连,在闭环条件下对实际控制器进行实时测试。由于这种实时仿真系统回路中有实际控制器硬件介入,因此被称为硬件在回路仿真(Hardware-in-the-LoopSimulation)。
尽管在真实系统上进行试验是必不可少的,但是由于采用实机难以进行极限与失效测试,而采用实时仿真器可以自由地给定各种测试条件,测试被测控制器的性能,因此实时仿真器可作为快速控制原型(RapidControlPrototyping)的虚拟试验台,在电机、逆变器、电源和控制器需要同时工作的并行工程中必不可少。
图1电源-滤波-逆变器-交流电机系统
由于目前数字计算机处理速度的限制,不能实现亚微秒级物理模型实时仿真,需要对逆变器开关过程进行理想化处理,因此引入了离散事件系统。离散事件逆变器子系统与连续时间电机子系统耦合,使变流器-电机实时仿真器成为变因果和变结构系统。变因果是指离散开关事件发生前后,描述连续时间电机子系统的动态方程的输入变量与输出变量会变换位置;变结构是指在仿真进程中,离散开关事件引发状态转换,使连续系统结构发生变化。因而需要对动态方程不断地进行调整和初始化[1]。
现代电力电子技术探讨论文
一、电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1、整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
2、逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。